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n  high-pass  filter  artifacts  (they’re  real)  and  baseline  correction
it’s  a  good  idea)  in  ERP/ERMF  analysis

a,b,∗ b c d
arren  Tanner ,  James  J.S.  Norton ,  Kara  Morgan-Short , Steven  J.  Luck
Department of Linguistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
Departments of Hispanic and Italian Studies and Psychology, University of Illinois at Chicago, Chicago, IL, United States
Center for Mind & Brain and Department of Psychology, University of California, Davis, CA, United States
In Tanner, Morgan-Short and Luck (2015; henceforth TMSL) we
emonstrated how commonly-used high-pass filter settings can
istort ERP (and analogously ERMF) data, and that these distortions
an lead to spurious conclusions about the nature of the cognitive
rocesses engaged during the experimental task. We  appreciate
aess, Schröger, and Widmann’s interest in our work, and we thank

hem for their thoughtful commentary. Indeed, we feel that open
iscussion of these issues – and importantly empirical demon-
tration of the benefits and pitfalls of high-pass filtering, baseline
orrection, and other issues – will benefit the field by helping estab-
ish a set of best practices for signal processing in ERP research.
stablishing a consistent best-practices approach to filtering and
RP analysis more generally will help ensure cross-study compa-
ability within sub-fields of ERP research and lead more reliable,
onsistent, and replicable results.

Maess et al. raise two major points in response to our article.
irst, they argue that our original test data were not optimally
uited to show the benefits of high-pass filtering because they
imply did not contain enough low-frequency noise. Second, they
rgue that high-pass filtering should replace the common practice
f baseline correction in ERP research, contra our recommenda-
ions. We  will respond to both of these arguments here, as well as a
oint they raise about criteria for detecting filter-induced artifacts.

. Were our data too good?

First, Maess et al. suggest that our data had too little low-
requency noise to show benefits of high-pass filtering, and instead
how only the pitfalls of filtering-namely induced artifactual
ffects. They base this claim on visual inspection of our DC, 0.01 Hz
nd 0.1 Hz high-pass filtered ERP waveforms, and note that there
Please cite this article in press as: Tanner D, et al. On high-pass filter a
ERP/ERMF analysis. J Neurosci Methods (2016), http://dx.doi.org/10.1

as very little difference between them. They therefore argue that
here must have been nearly no low-frequency noise in the data,
uch that these modest filters had nearly no effect on the quality

∗ Corresponding author at: Department of Linguistics University of Illinois at
rbana-Champaign FLB 4080, MC-168 707 S. Mathews Ave. Urbana, IL 61801 USA.

E-mail address: dstanner@gmail.com (D. Tanner).

ttp://dx.doi.org/10.1016/j.jneumeth.2016.01.002
165-0270/© 2016 Elsevier B.V. All rights reserved.
of the data. However, inspection of grand mean ERPs is not a valid
means of assessing the presence of low-frequency noise in the data.
Low-frequency components that are truly noise should have a ran-
dom phase with respect to the onset of any given stimulus, so that
averaging will attenuate the low-frequency noise. This will be espe-
cially true with a grand average that is based on many hundreds of
total trials. Thus, it is not possible to assess the amount of low-
frequency noise by examining the effects of high-pass filtering on
averaged data.

There are three clear pieces of evidence that substantial low-
frequency noise was indeed present in the EEG. The first piece
of evidence was presented in TMSL: Our Monte Carlo simulations
showed that high-pass filtering at 0.01 or 0.1 Hz increased the sta-
tistical power of the N400 and P600 analyses. This would not have
been possible in the absence of low-frequency noise in the EEG.

A second piece of evidence is that the raw EEG contained easily
visible low-frequency drifts when viewed with a long time scale.
Fig. 1A illustrates this by showing a 1000-s interval of raw EEG
data for five randomly-selected individual participants from TMSL
at electrode Pz. It is quite clear that the voltage is drifting slowly
over time in all five cases. To formalize this and provide a third
piece of evidence, we  used the Fourier transform to compute the
amplitude spectral density (ASD) of the unfiltered EEG data and
the data after high-pass filtering with half amplitude cutoffs of 0.1
and 1 Hz for all 24 participants in TMSL. As shown in Fig. 1B, sub-
stantial low-frequency activity was  present in the unfiltered data.
Indeed, the low-frequency noise was several times greater than
the 60-Hz noise. It is also clear that even a modest high-pass fre-
quency cutoff produced a marked attenuation of the amplitudes
in these very low frequencies. Thus, the EEG in TMSL included
substantial low-frequency activity; high-pass filtering attenuated
this noise, which in turn led to improved statistical power. These
findings provide overwhelming evidence against the proposal of
Maess et al. that our data did not contain substantial low-frequency
activity.
rtifacts (they’re real) and baseline correction (it’s a good idea) in
016/j.jneumeth.2016.01.002

Maess et al. note that some EEG/ERP studies – such as those
involving children – may  yield higher levels of low-frequency
noise than observed in TMSL. This is certainly true. For exam-
ple, Kappenman and Luck (2010) showed that recording with

dx.doi.org/10.1016/j.jneumeth.2016.01.002
dx.doi.org/10.1016/j.jneumeth.2016.01.002
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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dx.doi.org/10.1016/j.jneumeth.2016.01.002
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Fig. 1. (A) Raw EEG from five randomly selected participants from TMSL. 1000 s of time is depicted. To highlight low frequencies in the data, a 5 Hz low-pass filter (−6 dB
cut-off,  24 dB/octave roll-off) was applied. The mean value of each individual’s 1000 s segment was removed prior to plotting. (B) Amplitude spectral density (ASD) of the raw
EEG  for three filter settings (DC, 0.1 Hz, and 1 Hz) at electrode Pz, averaged across all 24 participants in TMSL. To compute the ASD, first the mean DC value was removed from
each  individual’s data. A fourth order high-pass IIR Butterworth filter (−6 dB cut-off) was then applied to the continuous EEG data for the 0.1 Hz and 1 Hz filter conditions.
Individuals’ data were then split into 10-s segments with no overlap and the mean DC value was removed from each segment for the no-filter condition. Following the
recommendations in Maess et al.’s commentary, as well as Widmann et al. (2015), we did not re-DC-correct the filtered data after segmenting, as filters should suppress DC
offsets.  Before converting to the frequency domain, a Hanning window was  applied to each segment to reduce spectral leakage. The segments were transformed into the
frequency domain using the Fast Fourier Transform, multiplied by their complex conjugate to obtain a measure of power, and normalized. These power estimates were then
averaged across segments within an individual. After averaging, the positive frequencies were doubled to obtain the single-sided power spectral density and the square root
was  taken to obtain an ASD for each participant. The individual ASD estimates were then averaged across all 24 participants from TMSL. Our method is equivalent to the
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ATLAB pwelch function, with the exception that the DC component was  removed f
o  enhance visibility of the low frequencies.

igh electrode impedances in a warm, humid recording environ-
ent can dramatically increase the amount of low-frequency noise.

appenman and Luck (2010) further showed that high-pass filters
an improve statistical power for large, easily measurable effects
ike the P300 in these less-than-ideal conditions. However, they
lso showed that severe high-pass filtering (with cutoff frequen-
ies ≥0.5 Hz) can dramatically distort the resulting ERP waveforms,
educing P300 amplitude and producing an artifactual negative
eflection before the P300. Thus, even when high levels of low-
requency noise are present, high-pass filters with cutoffs greater
han approximately 0.1 Hz may  create more problems than they
olve.
Please cite this article in press as: Tanner D, et al. On high-pass filter a
ERP/ERMF analysis. J Neurosci Methods (2016), http://dx.doi.org/10.1

. Is there a good way to identify filter distortions?

Maess et al. argue that filter cutoffs should be selected by consid-
ring both the nature of the noise to be filtered and the nature of
he individual segments in the no filter condition. The x-axis is plotted on a log scale

the signal; the general goal is to choose a filter that is the best com-
promise between maximal noise reduction and minimal distortion
of the signal. In principle, we agree. However, this assumes that
we know the properties of the signal a priori. In most experiments
the signal is not known and the goal of the experiment is to deter-
mine the properties of the signal. Moreover, the observed data will
be a mixture of signal and noise, so it will be difficult to use the
observed data to determine the nature of the signal. However, it
may  be possible to filter artificial waveforms to determine whether
an observed pattern of results in filtered data could potentially be
explained by filter artifacts (see, e.g., Fig. 2 in TMSL). This approach
was used very effectively by Yeung et al. (2007) to demonstrate
that previous conclusions regarding the role of theta oscillations in
rtifacts (they’re real) and baseline correction (it’s a good idea) in
016/j.jneumeth.2016.01.002

the error-related negativity could potentially be explained by filter
artifacts.

A second issue with the post hoc waveform comparison
approach advocated for by Maess et al. is that it can lead to problems

dx.doi.org/10.1016/j.jneumeth.2016.01.002
https://www.researchgate.net/publication/6562215_Theta_phase_resetting_and_the_error-related_negativity?el=1_x_8&enrichId=rgreq-70245a08f3026647a65f0b2b96f1d208-XXX&enrichSource=Y292ZXJQYWdlOzI4OTI1MDA3NDtBUzozMjEyMTY4ODYzMTI5NjJAMTQ1MzU5NTQ4MTkxNw==
https://www.researchgate.net/publication/264796099_Digital_filter_design_for_electrophysiological_data-A_practical_approach?el=1_x_8&enrichId=rgreq-70245a08f3026647a65f0b2b96f1d208-XXX&enrichSource=Y292ZXJQYWdlOzI4OTI1MDA3NDtBUzozMjEyMTY4ODYzMTI5NjJAMTQ1MzU5NTQ4MTkxNw==
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0.01 Hz High-pass filter                             0.3 Hz High-pass filter

0.1 Hz High-pass filter                               0.5 Hz High-pass filter

Baseline Correction                                   No Baseline Correction

Fig. 2. Ungrammatical minus grammatical difference waves showing the effects of filtering and baseline correction on data from the syntactic condition reported in TMSL.
Difference waves on the left-hand side were baseline corrected using a 200 ms  prestimulus interval. Difference waves on the right-hand side were not baseline corrected.
Note  that in the data without baseline correction, there were no systematic differences between conditions in the pre-stimulus interval in the 0.01 Hz filtered data. The 0.1
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nd  0.3 Hz high-pass filters, however, caused systematic differences between condi

f researcher bias. As discussed above, the true ERP signal is usually
nknown to the researcher, and in TMSL we showed that high-
ass filter artifacts can lead to theoretically viable (but bogus) ERP
ffects. Therefore, inspection of the data after filtering in multiple
ifferent ways could in some cases lead the researcher to choose
he filter setting that either best fits her/his a priori hypotheses or
hat provides the most novel outcome, even if this outcome is due
imply to filtering artifacts. Unless extensive simulations are con-
ucted for a given experiment, we argue that it is safer to use less
evere filtering, with the balance tilted toward minimal waveform
istortion and minimal experimenter bias, even if this leads to a
ost in statistical power.

. Does high-pass filtering overcome the problems of
aseline correction?

Maess et al. correctly point out that baseline correction can lead
o spurious effects (see Handy, 2005; Luck, 2014, for examples). As
n alternative, Maess et al. (see also Widmann et al., 2015) sug-
est using a sufficiently low high-pass cutoff frequency (i.e., low
nough to avoid spurious filter effects) in lieu of baseline correc-
ion. In theory, the filter will remove DC offsets and slow drifts,
ringing the signal to the true zero level during the prestimulus
eriod. However, as we will demonstrate here, there are notable
roblems with this approach as well – even when relatively modest
igh-pass filters are used.

One problem is that the bidirectional, noncausal filters usually
sed in ERP research will cause effects that occur after stimulus
nset to be pushed backward in time, potentially into the prestim-
lus interval. As we will demonstrate here, this can happen even
hen relatively modest high-pass filters are used. Thus, the base-

ine and early poststimulus interval may  become contaminated by
oststimulus effects, even in well-controlled experimental designs
hat contain no prestimulus differences in the raw data (see also
cunzo et al., 2012).

This is illustrated in Fig. 2, which shows difference waves
ungrammatical minus grammatical) from the syntactic condition
n TMSL with different high-pass filter cutoffs, both with and with-
ut baseline correction. With baseline correction, the mean voltage
uring the prestimulus period did not vary as a function of the fil-
er cutoff; this is a good approximation of the raw, unfiltered data,
hich showed little differential prestimulus activity between the
Please cite this article in press as: Tanner D, et al. On high-pass filter a
ERP/ERMF analysis. J Neurosci Methods (2016), http://dx.doi.org/10.1

rammatical and ungrammatical conditions (see Fig. 3 and Fig. 4 in
MSL). Without baseline correction, however, the P600 effect led
o a negative offset prior to stimulus onset that continued into the
mmediate poststimulus interval when the high-pass filter cutoff
in the pre-stimulus interval.

was ≥0.1 Hz, and this offset was  not present with the milder 0.01 Hz
filter. This could lead to the (obviously false) conclusion that the
participants had a precognition about whether the upcoming word
would be grammatical or ungrammatical. Thus, the application of a
high-pass filter without baseline correction can lead to artifactual
differences between conditions in the prestimulus baseline period,
even when none was  present in the raw data.

As mentioned previously, it can be dangerous to use real data
to assess filter artifacts because the truth is not known for the
real data. We  therefore performed some simple simulations to
demonstrate how high-pass filters can lead to artifactual effects
during the prestimulus period when used without baseline correc-
tion. Specifically, we  simulated P600 effects of varying magnitudes
and applied several high-pass filters to the simulated waveforms
with and without baseline correction. As shown in Fig. 3, even
with the relatively mild 0.1 Hz filter recommended by Widmann
et al. (2015), the filters led to contamination of the prestimulus
interval when applied without baseline correction (even though
there was no contamination in the raw data), and the ampli-
tude of the prestimulus contamination varied as a function of the
effect magnitude. This fact makes it difficult to use high-pass fil-
ters without baseline correction to test for possible problems in
the experimental design, as recommended by Maess et al., since it
is impossible to know whether any differences in the prestimulus
interval were caused by design problems or were caused by filter
artifacts. Moreover, the filter artifacts were magnified in ampli-
tude when no baseline correction was  applied. The amplification
of artifacts with increasing effect amplitudes would have conse-
quences for researchers studying other components like the P300,
which can have effect magnitudes in the tens of microvolts. The dis-
tortion of the prestimulus baseline was not as severe with higher
cutoff frequencies, but these higher cutoffs led to more extreme dis-
tortion of the poststimulus waveform. Together, these simulations
suggest that mild filtering (e.g., 0.1 Hz) combined with baseline
correction is the best solution for well-designed experiments in
which there are no systematic differences across conditions in the
prestimulus voltage, and that even mild filtering without base-
line correction can introduce spurious effects in the prestimulus
interval.

The baseline contamination shown in Figs. 2 and 3 would
not have occurred if we had used unidirectional, causal filters.
However, it is widely known that causal filters produce undesir-
rtifacts (they’re real) and baseline correction (it’s a good idea) in
016/j.jneumeth.2016.01.002

ably latency shifts. Moreover, as shown by Acunzo and colleagues
(Acunzo et al., 2012; see also Widmann et al., 2015), causal high-
pass filters introduce even more warping and distortions of the
poststimulus waveforms than do noncausal filters. Thus, causal

dx.doi.org/10.1016/j.jneumeth.2016.01.002
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Fig. 3. Simulated ERPs showing the impacts of filtering, baseline correction, and ERP effect amplitude. Raw simulated waveforms for four different effect amplitudes (3 �V,
5  �V, 10 �V, and 15 �V) are depicted at the top. Waveforms in the left column were baseline corrected using a 200 ms prestimulus interval. Waveforms in the right column
w oll- of

fi
u

4

c
o
d
i
h
t
i
a
a
e
t
t
a

ere  not baseline corrected. Filters were fourth order (-6 dB cut-off; 24 dB/octave r

lters are not usually a viable alternative to the noncausal filters
sed here.

. Summary and conclusion

The additional analyses and simulations presented here provide
lear evidence that (1) the conclusions of TMSL were not a result
f a lack of low-frequency noise in the data, (2) it is nontrivial to
etermine a priori whether a given filter setting will be able to min-

mize noise while avoiding distortion of the averaged ERPs, and (3)
igh-pass filtering is not an adequate substitute for baseline correc-
ion, at least for the kinds of well-controlled experiments assessed
n our data and simulations. We  therefore conclude that the best
pproach in most experiments looking at late ERP components such
s P300, N400, and P600 is a combination of: (1) well-controlled
Please cite this article in press as: Tanner D, et al. On high-pass filter a
ERP/ERMF analysis. J Neurosci Methods (2016), http://dx.doi.org/10.1

xperimental designs, (2) consideration of the participant popula-
ion and recording conditions when designing the experiment so
hat statistical power can be maximized without the use of dam-
ging high-pass filters, (3) application of modest high-pass filters
f) Butterworth IIR filters.

(0.1 Hz or lower) to the continuous EEG to maximize statistical
power while not introducing spurious components into the ERP
waveforms, and (4) baseline correction of the ERPs to eliminate
spreading effects of DC offset suppression that can contaminate the
prestimulus and immediate poststimulus interval with spurious
effects. We  also encourage ERP researchers to become acquainted
with the relatively simple mathematics underlying filtering (see
Luck, 2014) and to test the effects of filters on simulated data to
assess the artifacts that might be produced by the filters.
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