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Abstract— We present a motion planning algorithm for a
quasi-static Kirchhoff elastic rod in complex environments.
As the set of quasi-static deformations defines a finite di-
mensional manifold that can be parameterized by a single
chart, the configuration space formulation extends nicely to this
deformation space. This parameterization is computationally
expensive and our algorithm takes advantage of its linearization
to perform fast collision checking in its neighborhood. In the
context of physically realistic deformable rods, the efficiency
of this approximation can be coupled with motion planning
techniques to obtain significant performance improvements. We
demonstrate the effectiveness of our approach on various toy
and industrial scenarios.

I. INTRODUCTION

Motion planning is a fundamental problem in robotics
and has been extensively studied for last three decades.
So far, most of the work focused on rigid bodies and
articulated chains, but relatively little attention has been
given to deformable robots. Recent applications of robotics
algorithms in various fields such as virtual prototyping have
brought new motivations in this direction. In Product Life
Management (PLM), motion planning plays an essential role
for assembling and disassembling studies. However, due to
the lack of efficient algorithms, deformable parts that are
typically used in automotive and aeronautics industry are not
handled yet.

Moreover, in this context, many of the deformable parts
consist in ”Deformable Linear Objects” (DLOs), which are
characterized by having one dimension much greater than
the other two (cable, hose, pipe,...). This paper focuses on
planning a geometrical free path for a free-flying DLO in a
rigid environment.

The extension of the motion planning problem to de-
formable robots is nontrivial and implies new challenging
aspects. For a rigid body, the configuration is defined by the
finite number of parameters (here 6) that defines the frame,
whereas for a deformable robot the number of shapes given
a fixed frame is infinite. As deformation can be seen as
adding new degrees of freedom to the system, the exten-
sion to current configuration space based formulation might
seem straightforward. However, working with an inefficient
parameterization of a deformation would lead to a high
number of dependent degrees of freedom. This involves a
high-dimensional configuration space although the set of
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deformations describes a much lower-dimensional manifold.
Also, the deformation model that would describe how to get
from the configuration space to the workspace may be hard
to compute.

To overcome the curse of dimensionality we need a model
that respects the physical properties of deformations, but also
minimizes the number of model parameters.

The work from [5] offers a single global chart to describe
the manifold of equilibrium configurations of an elastic rod.
As coordinates in this chart are a subset of a low dimensional
Euclidean space, it is especially well suited for sampling-
based methods. However, computing the parameterization
of this manifold that gives us the Direct Geometric Model
(DGM) is computationally expensive. Our approach approxi-
mates the neighborhood of this parameterization and enables
fast collision checking in this neighborhood. We use this
approximation to perform efficient motion planning for free-
flying quasi-static elastic rods.

The rest of the paper is organized as follows: Section II
presents different approaches for the motion planning applied
to a deformable object. Section III contains a description
of the proposed approach and our FFG-RRT algorithm.
Section IV presents and discusses the experimental results.
Conclusions and future work are reported in section V.

II. RELATED WORK

Flexible rods mechanics have been extensively studied,
especially in the case of elastic deformations [1] [17] [10]
[3]. These works offer relatively accurate dynamic models
of an elastic rod, but the computational cost induced by the
use of numerical methods such as finite elements is too high
to include them directly into a motion planning framework.
For instance, [16] coupled a deformable dynamics simulator
with a kynodynamic motion planning algorithm. However,
the use of fully deformable environments prevents the robot
to be stuck in local minima and bypasses the local control
problem.

As in our context of assembling and disassembling studies
the goal is to find a geometric path for the rod, the use
of quasi-static models seems a reasonable assumption. In
this direction, [9] investigated for the manipulation planning
problem of deformable objects based on the computation of
their equilibrium configurations. This computation relies on
the numerical minimization of the total elastic energy for
given gripper placements. This work has been extended in
[12]. Similarly, [20] defines another static model also relying
on optimization techniques. In all the cited approaches, the
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use of numerical methods make them too computationally
expensive.

A different category of approaches, motivated by applica-
tions in computer graphics, relies on simplified deformation
models that do not take into account mechanical properties.
For instance, [2] pre-computes some reduced models of the
deformable object and use them to build a weighted roadmap
through Probalistic Roadmap (PRM) methods. [6] uses the
Constraint Based Motion Planning framework to simulate a
deformable robot using a mass-spring model along a rough
estimate of the solution path. [8] extended this work to DLOs
using a kinematic chain as deformable model. In these cases,
the quality of the solution mostly depend on the estimate and
might be unable to solve some cases.

In [11] a learning phase first collects high-dimensional
samples (e.g. using simulation) and computes a new basis
for the deformation set using linear dimensionality reduction
which is used to perform motion planning. Its main drawback
lie in the limitation to linear reduction and its nonlinear
extension requires additional information on the model.

This work tries to tackle all the drawbacks of the men-
tioned approaches. We build on top of recent work from
[5], which directly provides a parameterization of the finite-
dimensional manifold of equilibrium configurations for a
inextensible Kirchhoff elastic rod. This enables faster compu-
tation of deformation states and, coupled with neighborhood
information, we show that it can be efficiently used for
motion planning.

III. MOTION PLANNING FOR QUASI-STATIC
ELASTIC RODS

A. Problem Statement

Let R be a robot having n independent degrees of freedom.
The configuration space C of R is an n-manifold consisting
in the set of all configurations of R. Then the classic motion
planning problem can be stated as finding a continuous path
τ : [0, 1] → Cfree, where Cfree ⊆ C is the set of valid
configurations. In general, a configuration is valid if it is
collision-free in the workspace.

Consider now that the robot R is deformable, and more
specifically it is an elastic Kirchhoff rod in quasi-staticity.
[5] showed that the set of deformations D is an m-manifold,
then it is possible to apply the same formulation.

Sampling-based methods relies on a parameterization of
the manifold. Unfortunatly, finding a global parameterization
of a manifold is not always possible without going to higher
dimensions (e.g. the Lie Group SO(3) ). As D is a manifold,
it can be described by an atlas {(φα,Uα)}, that is a collection
of local charts (φα,Uα) where Uα ⊆ D.

Ideally, the model of deformation should provide a single
chart (φ,D), which would induce a global parameterization
φ−1 of D, with φ−1 : U → D and U ⊂ Rm. This
parameterization would offer an elegant way to sample on the
manifold and the Euclidean topology of the coordinates set
gives a straightforward metric. In this direction, the following
section will introduce a global parameterization for Kirchhoff
quasi-static elastic rods.

B. Kirchhoff Quasi-Static Elastic Rods

This section briefly presents the results of Bretl and
McCarthy [5]. We encourage the interested reader to refer to
the original paper for details. Consider a uniform inextensible
Kirchhoff elastic rod as defined in [18] having material
elasticity coefficients and fixed end positions. At equilibrium
configurations, the rod locally minimizes its total elastic
energy and its shape can be expressed as a local solution
to a geometric optimal control problem. From Theorem 6 in
[5], the set of solutions to this optimal control problem is
a 6-manifold that can be parameterized by an atlas having
a single chart, with coordinates given by the open subset
A ⊂ R6. Let t ∈ [0, 1] be the parameterization along the
rod and g : [0, 1] × A → SE(3) be the mapping that
describes the rod spatial position at its parameter t for a
given coordinate a ∈ A in previously described chart. Note
these spatial positions are relative to the rod base g(0, a).
For a fixed, computing g(t, a) for t ∈ [0, 1] requires the
integration of several nonlinear differential systems (see Fig.
6 in [5]). More specifically, sufficient conditions for static
equilibrium of the rod have to be checked. From Theorem
4 in [5], a rod configuration is in static equilibrium if and
only if det(J(t, a)) 6= 0 for all t ∈ (0, 1] where the Jacobian
matrix J ∈ R6×6 is defined by:

J(t, a) = Tg(t,a)Lg(t,a)−1

[
∂g(t, a)

∂a1
· · · ∂g(t, a)

∂a6

]
(1)

At a given rod position t, this Jacobian matrix describes
variations of the geometry ∂g(t, a) with respect to variations
∂a in the chart expressed at the identity element of SE(3).
The set of coordinates a for which the rod is in static
equilibrium will be noted Astable with Astable ⊂ A. These
results enable us to use the coordinates Astable to describe
an equilibrium configuration of the rod.

Note that A can be physically interpreted as the space of
moments and forces applied at the base of the rod.

C. Planning for Free-Flying Elastic Rods

In sampling-based methods for motion planning, a key
predicate is determining if a configuration lies in Cfree, i.e.
checking collision in C. In most cases, this is performed by
going back to the workspace W and carrying out two steps.
First, we compute the DGM, which consists in a mapping
from a robot configuration in C to its corresponding geometry
in W . Then, we check for collisions in W between robot
geometry and obstacles. If the geometry is collision free,
then q lies in Cfree.

Using the configuration space formulation, adding a 6
degree of freedoms free-flyer joint to the deformable robot
changes the configuration space to C = A × SE(3) which
is a 12-manifold. A configuration in this space will be noted
q = (a, p)T with a ∈ A and p ∈ SE(3). Note that we
consider here the free-flyer joint is attached to the base of
the cable. Then the corresponding rod geometry is described
by w : [0, 1] × C → W with W ⊂ SE(3). Let Ccol ⊆ C be
the set of all configurations of the rod that lead to collisions
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with the environment in the workspace. Obviously, this set
depends on both its deformation state a and its position p.
Let now Cself = {(a, p) ∈ C | a ∈ Aself}, with Aself ⊆ A,
be the set of all deformation states which results in a self-
colliding geometry. Then, the set of invalid configurations is
given by:

Cinv = Ccol ∪ Cself ∪ Cunstable (2)

with Cunstable = {(a, p) ∈ C | a /∈ Astable}. Finally, we
have defined the set of valid configurations for a free-flying
quasi-static elastic rod, i.e. Cfree = C \ Cinv .

D. Collision Checking With Fast DGM Approximation

It is now well known that the collision-checking step is a
bottleneck for motion planning problems. This is especially
true for virtual prototyping applications where the CAD
models have generally more than 100’000 polygons. In
common cases, computing the DGM is extremely fast (e.g.
a kinematical chain). But in the deformable object context,
computation of the DGM is considerably more costly. Us-
ing the rod model described in III-B, the DGM requires
the numerical integration along the parameter t of several
nonlinear differential systems. Even if these results are much
more efficient than a numerical approach based on minimal
energy optimization, this step becomes at least as costly
as collision checking in the workspace for a sufficiently
reasonable number of rod nodes. Note that the number of
nodes is given by the integration resolution, and consequently
the computational time to compute the DGM is in linear
complexity with the number of rod nodes.

1) Fast Neighborhood Approximation: To ensure a rod
configuration q is in static equilibrium, we have to compute
the Jacobian J(a) of the mapping g. Without additional com-
putational time, we can take advantage of this computation
which describes the behavior of the rod geometry in the
neighborhood of a in the deformation space A.

As the map g is smooth, we can apply first order Taylor’s
approximation. In the neighborhood of a, this approximation
g̃(t, a+ δa) is given by:

g̃(t, a+ δa) = g(t, a) exp (J(t, a)δa) (3)

From (1), the Jacobian is expressed at the identity element
of SE(3), so it maps variations in A to elements of the
tangent space of SE(3) at the identity, i.e. the Lie algebra
se(3). Then, the exponential mapping for elements of se(3)
can be efficiently computed using Rodrigues’ formula [13].

As illustrated in Fig. 1, (3) enables us to approximate
rod geometry up to 10 times faster than the full DGM
computation.

2) Local path validation: In addition to check if a config-
uration lies in Cfree, sampling-based methods also requires
a more general predicate. The local path validation consists
in checking if a local path (i.e. the shortest path between
two configurations with respect to the metric associated to
C), lies in Cfree. This is usually done by sampling along this
local path with a given resolution ∆q and checking collision
in C for each sample. In our case, the geodesic between
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Fig. 1. Log scale computation time of the DGM (red) and its first order
approximation (green).

Fig. 2. Correspondance between approximation of the rod geometry w̃(q)
in the workspace W (right) and approximation of the environment colliding
space C̃col in the configuration space C (left). In this case, the approximation
of the geometry induces a false invalid configuration detection.

two configurations q1 = (a1, p1)T and q2 = (a2, p2)T of
C = A× SE(3) is given by q(λ) = (a(λ), p(λ))T with

a(λ) = λa1 + (1− λ)a2 (4)

as A are coordinates on a chart and p(λ) is the geodesic on
SE(3) as defined in [15].

The approximated geometry w̃(q) given by (3) can be
checked for self-collisions and collisions with the environ-
ment, i.e. determining if q lies in C̃col ∪ C̃self , where C̃col
(resp. C̃self ) are local approximations of Ccol (resp. Cself )
due to the use of approximated geometry w̃(q) (see Fig. 2).
Note that the locally approximated invalid configurations set
C̃col∪C̃self differs from Cinv defined in (2) by not taking into
account unstable rod configurations Cunstable in addition to
the error induced by the approximation. However, as it will
be presented next, this difference is still much lower than
Ccol ∪ Cself and consequently, checking the approximated
geometry w̃(q) is a good guess of determining if q lies in
Cinv .

As sampled configuration along a local path are typically
close, this approximation can be efficiently used to approxi-
mately validate a local path. There are different approaches
to this end, and one is illustrated in Fig. 3. The basic idea
states as follow: while sampling along the local path with
a resolution ∆q, we select the closest configuration where
the DGM has been computed and we use its Jacobian to
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Fig. 3. Local path validation using DGM Jacobian approximation. The
approximation of the geometry w̃(qi) is obtained using the geometry w(qj)
of the closest configuration qj having exact geometry. Crosses (resp. dots)
represent configurations where the DGM will be approximated (resp. fully
computed).

approximate the geometry of the current sample if the dis-
tance between the two configurations is less than a threshold
∆C
ex. Otherwise, if there is no configuration with an evaluated

DGM in the neighborhood bounded by ∆C
ex, a new full

computation of the DGM will be performed.
This validation scheme raises two sub-problems that can

be handled efficiently. First, we must choose a good value
for the sampling distance ∆q. A too coarse resolution would
lead to missed collisions and, in the opposite, considerable
time would be wasted in unnecessary collision-checking for
a too fine value. Although variations ∂w(t, q) with respect
to ∂p can be computed globally, variations ∂w(t, q) with
respect to ∂a require more attention as the mapping g(t, a)
is only a local diffeomorphism (see proof of Theorem 8 in
[5]). To handle this problem, we chose to use ∆q as an initial
guess of the sampling resolution and we ensure the maximum
node to node distance as defined in (5) is less than a given
maximum penetration in the workspace.

The second problem is characterizing the neighborhood
where we assume the validity of our approximation. This is
detailed in the following paragraph.

3) Approximation error: Our work has been highly moti-
vated by the low distance error between an approximated rod
geometry using the Jacobian and the exact geometry given
by the DGM (see Fig. 4). The distance function considered
here is the maximum node to node distance given by:

ρ(w1, w2) = max
t∈[0,1]

dT (w1(t), w2(t)) (5)

where dT : SE(3) × SE(3) → R is the Euclidean distance
between the translation part of the nodes. Thanks to this
results, we have a good estimation about how far from a
configuration our approximation is assumed to be valid. For a
given distance error, the corresponding norm of the variation
in the deformation space A denoted ∆A

ex is then used to
compute its corresponding maximum variation ∆C

ex in the
full configuration space C for a given local path. This enables
us to take advantage of the decoupling between the two sub-
spaces A and SE(3). This distance ∆C

ex allows us to control
the size of the neighborhood we want to approximate. As
presented in the following algorithm, choosing a bad value
for ∆C

ex would not be critical for the validity of the result

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30

D
is

ta
n
c
e
 e

rr
o
r

Variation norm

Jacobian approximation error

Fig. 4. Measurements of the distance error between an approximated and
an exact geometry depending on the norm of the variation ‖δa‖ in A.

path and would only penalize performances.
4) Fast Forward Geometry RRT: In this section, we

present an extension of the classical RRT algorithm which
encapsulates our fast neighborhood approximation. We will
call it Fast Forward Geometry RRT (FFG-RRT). The global
structure of the FFG-RRT algorithm detailed in Alg. 1 is
very similar to a Lazy-RRT [4]. The RANDOM SAMPLE
function returns a randomly chosen configuration qrand in
C. NEAREST selects the closest configuration qnear from
sampled configuration in the tree according to the metric
of the configuration space. We consider here the weighted
metric between the metric on SE(3) from [15] and the
Euclidean metric on A. The APPROX EXTEND typically
consists in two steps. First, it must provides a steering
method that gives the local path between two configurations
without taking into account any obstacles. Then, it checks the
local path for collisions and returns the last collision free
configuration qnew. In our context of motion planning for
quasi-static Kirchhoff elastic rods, the APPROX EXTEND
function could be the local path validation as described in
III-D.2. However, we emphasize this could be replaced by
any extend method that could ensure a fast and reliable
approximation of the local path validity.

The CHECK SOLUTION function tries to find a solution
path in the current tree where most of the edges are only
approximately valid and check for exact validity of this
path. Invalidated edges are then removed from the tree.
There are many possible efficient variations (e.g. reconstruct
locally at invalidated edges or merging trees for multiple
trees algorithms) but a simple version is presented in Alg. 2.

Note the efficiency of this algorithm relies on the number
of tree reconstructions in the function CHECK SOLUTION.
As we seen that our approximation is close to the exact
DGM, this implies a low number of calls to this function
and this will be verified in the experimental results.

IV. EXPERIMENTAL RESULTS

In this section we will present and analyze
results on solving the motion planning problem
for free flying Kirchhoff elastic rods using the
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Algorithm 1 FFG-RRT(qstart, qgoal)
Input: Environment model, a robot DGM, start configura-

tion qstart and goal configuration qgoal
Output: A feasible path τ , or report failure

1: T .init(qstart)
2: for i← 1 to k do
3: qrand ← RANDOM SAMPLE()
4: qnear ← NEAREST(T , qrand)
5: qnew ← APPROX EXTEND(qnear, qrand)
6: if qnew 6= qnear then
7: T .addVertex(qnew)
8: T .addEdge(qnear, qnew)
9: end if

10: (solved, τ)← CHECK SOLUTION(qstart, qgoal, T )
11: if solved then return τ
12: end if
13: end for
14: return failure

Algorithm 2 CHECK SOLUTION(qstart, qgoal, T )
Input: Environment model, a robot DGM, start configura-

tion qstart, goal configuration qgoal and configuration
tree T

Output: A boolean that indicates if a valid solution exists
from qstart to qgoal in T and this path τ if any

1: if PATH EXISTS(qstart, qgoal) then
2: τ ← FIND PATH(qstart, qgoal)
3: isSolutionValid ← true
4: for all edges (qi, qj) of τ do
5: if not LOCAL PATH VALID(qi, qj) then
6: T .removeEdge(qnear, qnew)
7: isSolutionValid ← false
8: end if
9: end for

10: if isSolutionValid then return (false, τ )
11: end if
12: end if
13: return (false, emptyPath)

previously presented work. Videos are available at
http://projects.laas.fr/gepetto/index.php/

Members/OlivierRoussel#DLO static planning.

A. Implementation Detail

We chose to implement our approach on top of the classi-
cal RRT and RRT-Connect [7] planners for the benchmarks
using the C++ motion planning library OMPL [19]. The
numerical integration of differential systems required to ob-
tain the geometrical state of the rod was implemented using
fourth order Runge-Kutta methods. For collision checking,
the geometry of the rod was approximated to a hierarchical
chain of capsules (i.e. Line Swept Spheres). The Flexible
Collision Library (FCL) [14] was used to perform collision
checking computations. All the benchmarks were run on a
PC with 64GB of main memory and two Intel Xeon E5-

Fig. 5. The two toy scenarios used for benchmarks: crack (left) and
backward (right). Start (resp. goal) configurations of the rod are represented
in green (resp. red). Note the head of cable has been marked with a magenta
circle on the Benchmark scenario to emphasize solution path could not be
obtained with a point-like robot.

Fig. 6. Two industrial cases of disassembling for a free-flying cable (left)
and a fixed base cable (right). The cable has to get out from a highly
constrained start configuration (in green) to a low constrained configuration
(in red).

2620v2 processors, using only one core per run.

B. Benchmark Scenarios

We selected four distinguished scenarios in order to test
the effectiveness of our approach. Two firsts consist in toy
scenarios (see Fig. 5) where each shows a specific difficulty.
Last two scenarios are industrial cases with a disassembly
study (see Fig. 6). On all of this cases, bounds have been
set on the configuration space but, for clarity, environment
bounding boxes are not shown in the illustrations.
• Crack. Lightweight model where the rod must pass

through a crack shaped narrow passage. The length
(resp. diameter) of the rod is half the length (resp.
width) of the crack free space.

• Backward. Lightweight model where a point-like robot
path would give an invalid guess or approximate solu-
tion. Note that due to the bounding box, the DLO has
to go trough the corridor between obstacles.

• Free-Flying engine. Industrial model with 132,000
polygons and where the rod models a cable in a typical
disassembly study case.

• Fixed engine. The model is the same as in the previous
scenario but here the cable has a fixed base.

Note that on all of these scenarios, the rod has to deform
its shape to go from start to goal configurations. We ran the
benchmark 100 times for each case. The number of rod nodes
has been chosen to give sufficient realism of the physical
deformation and depends on the level of deformation and
the rod length.

1028



C. Results

TABLE I
PLANNING PERFORMANCE COMPARISON

Scenario RRT FFG-RRT RRT
Connect

FFG-RRT
Connect

Failed Failed 301,2 113,5 Time (1)
Crack 0 0 80 96,7 Success (2)

Failed Failed 246,7 38,5 Tot. FG (3)
- Failed - 0,07 Inv. app. (4)

Failed Failed 450,6 172,9 Time
Backward 0 0 93,3 86,7 Success

Failed Failed 360,1 49,4 Tot. FG
- Failed - 0,34 Inv. app.

Failed Failed 240,7 82,9 Time
Free-flying 0 0 100 100 Success
engine Failed Failed 129,5 11,4 Tot. FG

- Failed - 0,4 Inv. app.

95,1 19,6 636,8 250,9 Time
Fixed 50 40 100 100 Success
engine 69,4 3,4 446,1 49,3 Tot. FG

- 0 - 0,8 Inv. app.

Benchmark results are shown in Table I where (1) is
average planning time in seconds, (2) is success rate in
percentage, (3) is the average total forward geometry time
(i.e. time spent in exact DGM calculation and DGM approx-
imation time if relevant) and (4) is the average number of
invalidated solution paths due to the approximation. For each
scenario we set a timeout in time (30 min) and memory usage
(4GB).

We see our approach solves the problem about two to three
times faster than its respective classical implementation, with
a similar success rate. For classical algorithms, most of the
planning time is effectively spent in the DGM computation.
Thanks to our approach, this time which includes the geom-
etry approximation time is divided by a ratio up to ten.

Also, as toy scenarios typically show two connected
components with a narrow passage, bi-directional planners
such RRT-Connect are highly more efficient in these cases.
The very low number of invalidated solution paths confirms
the quality of the approximation, meaning that the function
CHECK SOLUTION detailed in Alg. 2 is rarely called. The-
ses cases where the approximated solution path is invalidated
are mainly due to the non respect of sufficient conditions for
static equilibrium as described in III-B (i.e. q ∈ Cunstable).

V. CONCLUSION AND PERSPECTIVES

In this paper, we presented an new approach to the
motion planning problem for an elastic rod. Using a realistic
physical model for the DLO, we are able to solve complex
industrial scenarios in a reasonable time. We also introduced
a new local planning scheme by taking advantage of the
linearization of the DGM which enables to solve the problem
from two to three times faster. This local method can be
embedded in many different motion planning algorithms and
extends to any model where the DGM cost becomes critical.

In the future, we would like to extend the approach
by coupling with dynamic simulation to ensure mechanical
constraints of the rod between two quasi-static rod configu-
rations.
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Dinesh Manocha, editors, Symposium on Solid and Physical Modeling,
pages 395–402. ACM, 2007.

[9] Florent Lamiraux and Lydia E. Kavraki. Planning paths for elastic
objects under manipulation constraints. I. J. Robotic Res., 20(3):188–
208, 2001.

[10] Joel Langer and David A. Singer. Lagrangian aspects of the kirchhoff
elastic rod. SIAM Rev., 38(4):605–618, December 1996.

[11] Arthur Mahoney, Joshua Bross, and David Johnson. Deformable robot
motion planning in a reduced-dimension configuration space. In ICRA,
pages 5133–5138. IEEE, 2010.

[12] Mark Moll and Lydia E. Kavraki. Path planning for deformable linear
objects. IEEE Transactions on Robotics, 22:625–636, 2006.

[13] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A mathemat-
ical introduction to robotic manipulation, 1994.

[14] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose
library for collision and proximity queries. In ICRA, pages 3859–3866.
IEEE, 2012.

[15] F. C. Park. Distance metrics on the rigid-body motions with appli-
cations to mechanism design. ASME Trans., Journal of Mechanical
Design, 117(1):48–54, 1995.

[16] Samuel Rodrı́guez, Jyh-Ming Lien, and Nancy M. Amato. Planning
motion in completely deformable environments. In ICRA, pages 2466–
2471. IEEE, 2006.

[17] JC Simo. A finite strain beam formulation. the three-dimensional
dynamic problem. part i. Computer methods in applied mechanics
and engineering, 49(1):55–70, 1985.

[18] David A Singer, Oscar J Garay, Eduardo Garci´ a Ri´ o, and Ramo´ n
Va´ zquez Lorenzo. Lectures on elastic curves and rods. In AIP
Conference Proceedings, volume 1002, page 3. Citeseer, 2008.
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