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Abstract— This paper presents a control strategy based on
model learning for a self-assembled robotic “swimmer”. The
swimmer forms when a liquid suspension of ferro-magnetic
micro-particles and a non-magnetic bead are exposed to an
alternating magnetic field that is oriented perpendicular to the
liquid surface. It can be steered by modulating the frequency of
the alternating field. We model the swimmer as a unicycle and
learn a mapping from frequency to forward speed and turning
rate using locally-weighted projection regression. We apply
iterative linear quadratic regulation with a receding horizon to
track motion primitives that could be used for path following.
Hardware experiments validate our approach.

I. INTRODUCTION

Recent work has shown that a suspension of ferro-
magnetic micro-particles (45µm) will form a large-scale
structure when exposed to an alternating magnetic field that
is oriented perpendicular to the liquid surface [1]–[3]. This
structure becomes mobile and turns into a self-assembled
robotic “swimmer” when symmetry is broken by adding
a larger non-magnetic bead (1mm). The motion of this
swimmer is unidirectional, generally toward the bead that
forms the head. Changes in frequency of the alternating
magnetic field (30-40Hz) cause changes in the arrangement
and characteristic length of the swimmer, which in turn
change the surrounding flow and affect subsequent motion.

Previous work has focused on understanding the physics
that govern these phenomena. In this paper we focus on
developing a control strategy that allows us to steer the
resulting swimmer along primitives of canonical shape (e.g.,
circles of different radius) that could be used to follow
arbitrary paths.

We model the self-assembled robotic swimmer as a non-
holonomic unicycle, under the constraint that it only moves
forward. We apply locally weighted projection regression
(e.g., see [4]) to learn the mapping from applied frequency to
forward speed and turning rate given data collected offline.
We apply iterative linear quadratic regulation with a receding
horizon (e.g., see [5]) to track motion primitives given visual
feedback. We validate our approach in hardware experiments
with the system shown in Fig. 1.

Our work is motivated by applications that include targeted
drug delivery and non-invasive surgery. The self-assembled
robotic system that we describe here (and, in particular,
the visual feedback that we currently require) is clearly not

C. Orduño is with the Department of Mechanical Science and En-
gioneering, A. Becker is with the Department of Electrical and Computer
Engineering and T. Bretl is with the Department of Aerospace Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
{orduno1,abecker5,tbretl}@illinois.edu

12mm

s1
s2

s3
s428Hz

��
���

40Hz

3mm

77Hz

Fig. 1. Our hardware platform (left) and the resulting self-assembled
robotic “swimmer” (right), which arises when an alternating magnetic field
is applied perpendicular to an air-water interface that contains a suspension
of ferro-magnetic micro-particles and a non-magnetic bead. The structure
of the swimmer changes with the frequency of the alternating field—shown
is the same swimmer at three frequencies. The four swimmer segments are
indicated by s. One chain has been colored in orange and the centerline is
shown in red. The multimedia attachment shows swimmer formation.

appropriate for these applications yet. We view this system
as a platform for the development of new control strategies
and for the exploration of new mechanisms for self-assembly,
which we hope may build a foundation for future systems
with more practical application.

Our paper proceeds as follows. Section II gives a brief
overview of related work, focusing on methods of self-
assembly, of magnetic control of micro-robots. Section III
describes both the self-assembled robotic swimmer and our
hardware implementation in more detail. Section IV presents
our approach to model learning and validation, which is
based on the use of locally weighted projection regression.
Section V presents our approach to control, which is based on
the use of iterative linear quadratic regulation with a receding
horizon. Section VI shows our experimental results. Section
VII concludes with a brief discussion of opportunities for
future work.

II. RELATED WORK

The swimmers covered by this work exhibit self-assembly.
Their size and actuation mechanisms place them in the
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class of magnetically controlled micro robots. Finally, their
dynamics are dependent on their structure, which is randomly
generated when they are formed. This uncertainty requires
model learning before we can control them.

A. Self-assembly
Magnetic swimmers fit into a broader category of self-

assembled systems, an overview of which is given by White-
sides and Grzybowski [6]. They define self-assembly as a
reversible process by which pre-existing discrete entities bind
to each other without being directed externally. The magnetic
swimmers form spontaneously under appropriate particle
loading and magnetic frequency. The process is reversible
in that the swimmer components quickly separate out when
the driving frequency is removed.

Self-assembly is of considerable interest to the robotics
community, from applications such as self-arrangement in
parts-handling [7] to task-oriented self-assembly of modular
robots [8]. Our swimmers have no autonomy, so only their
formation can be considered self-assembly. With external
control, these swimmers can be directed to follow paths,
impact their environment, or grow into larger swimmers. The
former tasks are related to parts-handling while the latter is
similar to modular robotics.

B. Magnetically controlled of micro robots
Magnetically controlled micro robots are an active field

of research. Because they involve actuation from a distance
they are being pursued for applications in medical devices
[9]–[11].

Sudo et al. presented a 5mm magnet with a flexible
tail, propelled by an external magnetic field [9], capable
of swimming in viscous fluid. This robot was designed to
be navigable through the human heart and large arteries.
Abbott et al. contrast the efficacy of pulling using a magnetic
gradient versus micro robots that flex or use helical propeller
to swim through a fluid, and find that swimming micro robots
become more desirable as distance from the generating
magnetic field increases and as the robot size decreases.
The swimmers presented by [10], [11] exhibit variation in
velocity, but are constrained to all have the same orientation,
so they cannot be steered independently.

Parallels can also be found with the non-swimming micro
manipulation work of Diller and Sitti et al. They con-
trolled the 2D coordinates of multiple micro-scale perma-
nent magnets by exploiting heterogeneity in the dimensions
of the magnets [12], [13]. In this work a single control
signal was applied to each magnet, but unlike the helical
swimmers of [10], [11], independent control was possible
due to heterogeneity. Similarly, the magnetic swimmers we
present have unique dynamic models that are based on their
structure. This heterogeneity leads to unique velocity and
curvature as a function of magnetic frequency, and could
enable independent control.

III. SYSTEM DESCRIPTION

The self-assembled swimmers consist of nickel micro-
particles suspended on the liquid-air interface. Driven by

a collective behavior and due to an external alternating
magnetic field, these particles congregate into a snake-like
structure capable of generating water flows on the surface.
We now describe the dynamics behind the self-assembly
process, the steady-state behavior and their response to
changes on the magnetic field. This work leads to the design
of a modeling algorithm, described in Section IV. A brief
description of the hardware platform used is also presented.

A. Self-Assembled Magnetic Swimmers

Magnetic particles suspended on the liquid-air interface,
subject to an alternating magnetic field, will exhibit a self-
assembly behavior [1]. The phenomenon is driven by the
collective response to the magnetic field and the generation
of surface waves by the oscillating particles.

The self-assembly process starts when, in the presence of
the alternating magnetic field (20 to 120Hz), the magnetic
moments from the particles are aligned ferromagnetically
along the chain direction driven by dipole-dipole interactions
[1]. On a larger scale, these chains order to form segments
which, in contrast to the chains, have an antiferromagnetic
ordering.

The applied alternating field also causes the particles to
oscillate in place, dragging the adjacent water. Consequently
the segment oscillations create fluid motion at both ends of
the snake-like structure. This fluid motion is nearly equal for
frequency values below 85Hz [3]. If a glass bead (1-1.5mm
in diameter) is placed near one end, it will slow fluid flow
at that end and the liquid displacement will be higher at the
opposite end producing a net forward displacement.

Belkin and Snezhko present in-depth experimental and
theoretical studies of the water flows [2] which range from
0.4cm/s to 2cm/s.

By adjusting the magnetic field frequency we are capable
of modifying the segment arrangement and characteristic
length, resulting in a change of the differential water flow
from both sides. As the frequency value is increased the
segment sections contract, increasing both the overall water
flow and the difference in flows from both sides. This inho-
mogeneity enables swimmer steering by selectively choosing
a frequency value to achieve a particular turning rate or
swimming curvature.

On a perfectly symmetric swimmer, varying the control
frequency would only result in a change of the forward
speed with no modification of the turning rate. In practice,
all swimmers have some degree of asymmetry, resulting in a
variety of possible curvatures. In our experiments, we often
deliberately exaggerate asymmetries when we introduce a
bead.

Below critical frequency values [14] the swimmer struc-
ture is stable, subject to changes only when chains detach
from their corresponding segment due to collision with the
beaker wall or interactions with the water flow and suspended
particles along the path. These changes modify the response
of the swimmer to a given frequency.

We select the 30 to 40Hz frequency range for driving the
swimmers because it offers two relevant advantages: within
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Fig. 2. One self-assembled swimmer shown at increasing magnetic
frequencies. The swimmer begins with four well-defined segments, but
looses structure when the frequency increases above 40Hz. If the magnetic
frequency returns to 40Hz, the swimmer will have a new shape and new
dynamics.

this range the swimmer configuration is mostly reversible
and this range exhibits the largest changes in velocity and
turning rate. As Fig. 2 depicts, above 40Hz the segments of
a swimmer tend to loose structure.

B. Hardware Platform
Our hardware platform consists of a cylindrical glass

container (145mm in diameter) inside a Helmholtz coil
(220mm in diameter, 83mm in height). The coil is energized
by an alternating voltage generated by a dedicated frequency
modulator (FM) circuit connected to an amplifier. The con-
trol system runs on a workstation (Intel Xeon 2.4 GHz).
The desired frequency is commanded to the FM circuit via
an external DAC box (UEI Power DNA-A0-308-350). The
control loop is closed using a digital camera (camera: Basler
A601f / lens: Edmund Industrial Optics 35mm double gauss
54689). A backlight is added using a flat illumination screen
obtained from a laptop computer.

IV. MODEL LEARNING

The swimmer structural configuration defines its dynam-
ics. The swimmer formation process is stochastic, so we
cannot create a reliable model until the swimmer forms. We
could attempt to obtain a model whose parameters depend
on the observed features of the swimmer, but this approach
would require both complex image processing and an expen-
sive, high-resolution vision system. Instead we choose to use
simpler computer vision algorithms to locate the swimmer
head, record a history of these positions under a range of
excitation frequencies, and use this data to learn an online
forward dynamic model, where future swimmer states can
be predicted based on past observations. Several regression
methods (e.g [4], [15], [16]) have been applied for the control
of robotic systems (e.g. [4], [17]–[19]). We want a method
to learn a forward model with the following characteristics:

1) requires no previous knowledge of the swimmer dy-
namics

2) is fast to compute for both learning and evaluation
3) is capable of on-line learning

These criteria imply we are looking for an incremental
regression method that is structurally adaptive and is based
on local models. We choose Locally Weighted Projection
Regression (LWPR). This is a regression method that builds
local linear regressions of a non-linear function and can
operate on-line. Fig. 3 shows a block diagram of this process.

A. Locally Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) (see [4])
is an extension of Receptive Field Weighted Regression in
[20]. LWPR approximates a nonlinear function by piecewise
linear models. The learning process consists of choosing K,
the number of local models, and obtaining the characteristic
parameters bk of the hyperplanes that describe each local
model. A crucial step is determining the region of validity,
also called the Receptive Field (RF), in which each linear
model can be trusted.

The receptive field of each local model can be computed
from a Gaussian kernel:

wk = exp

{
−1

2
(x− ck)

>
Dk (x− ck)

}
, (1)

where wk is a weight, x is the query point, ck is the center
of the k-th linear model, and Dk ≥ 0 is a distance metric
that determines the size and shape of region of validity of
the linear model. Other kernel functions are possible.

In LWPR local models are built continuously in the entire
support area of the input data at selected points in input
space. The prediction for a query point ŷ is then formed as
the weighted average of the predictions of the local models
whose receptive fields are selected. If N local models are
chosen, the prediction is calculated by a weighted average

ŷ = f̂ (x) =

∑N
k=1 wkŷk∑N
k=1 wk

, (2)

and the regression function can be written as:

ŷk = b0k + b>k (x− ck) ,

where b0k and b>k denote the offset and slope of the k-th
local linear model.

LWPR can adapt to changes of the system dynamics in
real-time as new data become available. This is done by
setting a forgetting factor λ, which is selected to balance
between preserving the learned model and adapting to new
data.

We use the LWPR algorithm implementation provided by
Klanke et al. [21].

B. Swimmer Modeling

The nonlinear dynamical behavior of the swimmer can be
described by the difference equation:

xk+1 = fk(xk,uk), k = 0, . . . ,K − 1 (3)

Assuming the system can be approximated to an autonomous
model, valid over some time horizon K−1, i.e. the duration
of the motion primitive, we can rewrite (3) as:

xk+1 = f(xk,uk), k = 0, . . . ,K − 1 (4)

On the magnetic swimmer the state and control input are
defined as

xk = [rk, βk, φk]
>
, uk = uk . (5)
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Fig. 3. Block diagram of model learning and our control strategy, explained in Sections IV and V.
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r
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Fig. 4. Coordinate frame (r, β, φ) used for magnetic swimmers. The
swimmer is shown in green.

The state components rk and φk are the magnitude and
angle of the vector pointing from the world center to the
swimmer’s head, and β denotes the angle of the body with
respect to this vector, as shown in Fig. 4. The Helmholtz
coil is energized with a sinusoidal signal Ak sin (2πψkt),
where Ak is the amplitude of the signal and ψk the frequency.
Experimentally, Ak is kept fixed and uk = ψk.

Assuming symmetric dynamics with respect to φ, we
approximate the general form in (4) by:

xk+1 = xk + ∆t · f̂(π(xk),uk) π 7→ r, β. (6)

The function f̂ is learned using LWPR. The general form of
f̂ is split into three individual models corresponding to each
output variable, where the input-output pairs are computed
as:  (rk+1 − rk)/∆t

(βk+1 − βk)/∆t
(φk+1 − φk)/∆t

 =

 Mr̂(r, β, u)
Mβ̂(r, β, u)

Mφ̂(r, β, u)

 . (7)

We start the learning process by collecting real-time data.
The system is driven for 240s by a repeating triangular
input from 30Hz to 40Hz with a 10-second period, and the
resulting state measurements are collected. Fig. 5 shows rep-
resentative data. The time history of states is then smoothed
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Fig. 5. Typical training data used for learning a model.

Fig. 6. Training data and learned model Mβ̂(r, β, u) 7→ β̂. Similar
models are created for Mr̂(r, β, u), and Mφ̂(r, β, u).
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using a low-pass Butterworth filter that takes advantage of
the time dependance. Example data and the learned model
are shown in Fig. 6.

Our objective is to learn a model that, given the state xk
and the control input uk, predicts the resulting state xk+1

The result is a nonlinear approximation of (6) which we
use in Section V to simulate our system dynamics and design
a LQR controller. Fig. 3 provides an overview of this process.

V. CONTROL STRATEGY

Our objective is to obtain a control law u∗k = πk(xk)
for following circular paths. We use the nonlinear dynamical
model learned in Section IV. We define the following optimal
control problem that penalizes deviation from the desired
state x∗k and control effort u∗k.

minimize
uk

1

2

K∑
k=0

(δx>kQδxk + δu>kRδuk)

subject to xk+1 = f(xk,uk),

(8)

where δxk = xk − x∗k, δuk = uk − u∗k and Q ≥ 0,R > 0
are the state cost and input cost matrices.

A. Iterative LQR

Iterative LQR (iLQR) [5], also known as Gauss-Newton
LQR and Sequential LQR, is a method for solving optimal
control problems with a nonlinear cost function and dynam-
ical model:

minimize
uk

J =

K∑
k=0

lk(xk,uk)

subject to xk+1 = f(xk,uk).

(9)

The method begins with an initial control guess Ū
(0)
k =

{ū(0)
0 , ū

(0)
1 , . . . , ū

(0)
K }, and the corresponding nominal state

sequence X̄
(0)
k = {x̄(0)

0 , x̄
(0)
1 , . . . , x̄

(0)
K } obtained from (9),

and continues by computing a linear approximation of the
dynamics and a quadratic approximation for the cost around
the nominal trajectory X̄

(i)
k . Essentially iLQR transforms a

nonlinear optimal control problem to a linear time-varying
optimal control problem:

minimize
uk

J =

K∑
k=0

(x>kQxk + u>kRuk)

subject to xk+1 = Axk + Buk.

(10)

Solving the LQ formulation will provide an improved
control sequence Ū

(i)
k and corresponding state trajectory

X̄
(i)
k (for more details on linear quadratic methods see [22]).

We iterate over the last state trajectory or exit if J (i) <
tol · J (i−1). It is relevant to highlight that x∗k, u∗k need not
be feasible for this method to work.

B. Tracking Motion Primitives

To solve (9), we apply the method described in Section
V-A with the following extensions and modifications:
• To improve convergence to a local optimum, we use the

dynamic model

xk+1 = αx∗k + (1− α)f(xk,uk),

and decrease α each iteration, to switch from the desired
trajectory when α = 1 to the system model when α = 0.
In practice, computational speed restricts the number of
iterations we can do during real-time control, but ex-
perimentally, three iterations with α = {0.7, 0.1, 0.05}
suffice for convergence.

• The LQ approximation of the dynamics and cost are
expressed in terms of δxk driving the error to zero, and
are extended to penalize an immediate change in control
input:

minimize
vk

J =
1

2

K∑
k=0

z>kQzk + v>k Rvk

subject to zk+1 = Ākzk + B̄kvk

where:

zk = [δxk, δuk]
>

vk = δuk − δuk−1
Āk =

[
Ak Bk

0 I

]
B̄k =

[
Bk

I

]
• The initial guess u0 and target control inputs u∗ are ap-

proximated using curvature information from the model
learning data.

We can compute a feedback law for the complete motion
primitive (from 7s to 30s), but our simulator performance
quickly degrades after 5s. Our solution is similar to a
receding horizon controller. We use a computed feedback
law for 1s and then recompute the law, using our current
position as the new initial position.

The swimmer is moving forward whenever an alternating
magnetic field is applied. Removing the field causes the
structure to rearrange, changing the dynamic behavior. This
is relevant since in our implementation, the time K∗ required
to compute the optimal control sequence is approximately
10% of the sequence duration. During this time we cannot
apply feedback control. This issue is solved by propagating
in simulation the current state K∗ steps forward using a
nominal control input and feeding the resulting state as the
initial condition for our computation.

We use this methodology to track motion primitives that
are each circular arcs. The user specifies the radius r∗ and
center location cx, cy for the circle, and the algorithm follows
this path by projecting the current point to the target path (i.e.
the closest point on the circle) and obtaining K target states
x∗k. The iLQR controller is then computed as presented.

VI. HARDWARE EXPERIMENTS

A. Experimental Procedure

For an experimental trial, the magnetic field is turned off
and <0.1g of 45µm nickel spheres are deposited over the
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Fig. 7. Curvature as a function of r and u calculated using 400s of data
from a single swimmer. When the swimmer reaches the border, i.e. r = 1,
meniscus effects bounce it back, resulting in high curvature. Each swimmer
has a unique response to the input u, and has maximum and minimum
curvatures which constrain feasible paths.

water-filled container (27.5mm water height) using a sieve
(200-mesh). We then generate a sinusoidal magnetic field at
30Hz and allow the magnetic moments of the micro-particles
to orient and form chains and anti-ferromagnetically oriented
segments, a process described in Section III-A. Once a stable
swimmer has been formed we linearly increase and decrease
the frequency from 30Hz to 40Hz every 10s, an action
that stabilizes the segments. At this point the swimmer is
nearly symmetric and the water flow at each end is balanced,
resulting in a static structure.

To induce an asymmetric structure we manually place a
glass bead (1.5mm diameter Ni-Pd-Ni), and one end and
position it slightly offset from the centerline, creating the
swimmer’s head. Offsetting the head to the right produces
a counterclockwise swimmer, while placing it to the left
produces a clockwise swimmer. Further manipulation with
a permanent magnet may be required to make the swimmer
more compact.

Once a reliable swimmer has been formed, we proceed
to the model learning phase. We apply a triangular wave
ranging from min to max frequencies, and record a minimum
of 20, 000 swimmer states at 60Hz. Next, this data is fed to
our model learning algorithm which outputs the number of
receptive fields K, curvature vs r, u and β plots, and the
MSE obtained with respect to the training data to ensure a
similar performance to the values obtained during the tuning
phase of LWPR. Fig. 7 shows a plot of curvature and u vs
r.

At this point the user may specify a target circle on the user
interface and start the control process. The data generated
during this process is recorded for later analysis.

B. Results

We conducted a series of experiments to assess the perfor-
mance of our model learning algorithm and controller, and
present two example swimmers, each following a circular
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Fig. 8. Predicted (dashed line) vs. actual (solid line) paths as a function
of time. The simulator prediction has low error up to 5s. This value is used
for calculating the controller’s time horizon.

Model
r̂ S1 S2

S1
train 4.52e-03 4.95e-02
test 1.62e-02 3.90e-02

S2
train 1.04e-01 1.18e-02
test 1.26e-01 3.98e-02

β̂ S1 S2

D
at

a S1
train 4.75e-02 1.35e+00
test 2.94e-01 1.15e+00

S2
train 4.68e-01 4.83e-02
test 4.02e-01 8.51e-01

φ̂ S1 S2

S1
train 3.31e-02 6.14e-01
test 2.96e-01 5.16e-01

S2
train 3.77e-01 2.19e-02
test 1.38e-01 1.15e-01

TABLE I
NORMALIZED MEAN SQUARE ERROR (NMSE) BETWEEN ACTUAL DATA

AND VALUES PREDICTED USING LWPR FOR TWO SWIMMERS, S1 AND

S2 . DATA IS SEPARATED INTO A TRAINING SET (80%) AND A TESTING

SET (20%). 26, 490 POINTS WERE USED FOR S1 AND 20, 791 FOR S2 .

motion primitive. We describe the results obtained for the
model learning and motion primitive tracking phases.

1) Model Learning: Table I summarizes the performance
of the models learned for swimmers S1 and S2. As
expected, the nMSEs obtained from the training data
are lower than those from the test data. Additionally,
the cross-validation errors (S1 model vs. S2 data, S2
model vs. S1 data) are up to 3x greater than those
from the test data. This emphasizes the importance of
learning a new model for each swimmer. As seen in
Fig. 8, the simulator accurately predicts the swimmer’s
trajectory up to a horizon of 5s.

2) Motion Primitive Tracking: Our controller was able to
reliably follow circular paths at multiple origin and
radius values. Fig. 9 shows two representative experi-
ments for different swimmers and receding horizons.

These results are preliminary. Currently it is difficult to
produce a solution of nickel particles that will generate a
stable swimmer. Less than 10% of particle solutions resulted
in swimmer formation. Once a satisfactory solution of nickel
particles was found, slightly more than 50% of trials were
successful (success defined as gathering training data, learn-
ing a model, and tracking one revolution of a circle.)
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Fig. 9. Paths followed by two different swimmers while tracking a circle.
Left: a CCW swimmer with a receding horizon of 1s. Right: a CW swimmer
with a receding horizon of 0.2s

VII. CONCLUSION AND FUTURE WORK

In this paper we modeled the self-assembled magnetic
structures introduced by Snezho and Belkin [1]–[3] as dy-
namic robots. These structures are of interest to the robotics
community because they can be replicated with minimal
hardware and are under-actuated yet controllable.

We presented a strategy using locally-weighted projec-
tion regression to learn dynamic models for self-assembled
swimmers and a control policy based on iterative LQR to
follow motion primitives. Through hardware experiments
we validated our dynamic models and used them to follow
circular paths.

These results are preliminary. The swimmer’s structure
varies over time, and the learned model should continue
to adapt. Future work could extend these results to ob-
stacle/collision avoidance and point-to-point manipulation.
The multimedia attachment shows a human controlling the
magnetic field frequency for both of these tasks. There are
many methods to automate this. For instance, to construct a
feasible path from a start to goal location, we could use our
motion primitives as a set of inputs for a Rapidly-Exploring
Random Tree [23, Chap. 14]. Similar methods could be
employed for obstacle avoidance.

Finally, while we have demonstrated that self-assembled
swimmers have unique dynamic models, work remains be-
fore we can simultaneously control multiple swimmers. The
video attachment illustrates some of the challenges involved
with multiple swimmers. Collisions are more likely, and fluid
flow from one swimmer can disrupt another.
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