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Abstract— In this paper, we address the problem determining
the connectivity of a robot’s free configuration space. Our
method iteratively builds a constructive proof that two con-
figurations lie in disjoint components of the free configuration
space. Our algorithm first generates samples that correspond
to configurations for which the robot is in collision with an
obstacle. These samples are then weighted by their generalized
penetration distance, and used to construct alpha shapes. The
alpha shape defines a collection of simplices that are fully
contained within the configuration space obstacle region. These
simplices can be used to quickly solve connectivity queries,
which in turn can be used to define termination conditions for
sampling-based planners. Such planners, while typically either
resolution complete or probabilistically complete, are not able
to determine when a path does not exist, and therefore would
otherwise rely on heuristics to determine when the search
for a free path should be abandoned. An implementation of
the algorithm is provided for the case of a 3D Euclidean
configuration space, and a proof of correctness is provided.

I. INTRODUCTION

We address the decision problem for path planning: Given
initial and goal configurations for a robot, does a collision
free path exist that connects them? Most modern path plan-
ning algorithms rely on iterative sampling schemes to address
this problem using incremental search of some sort. These
algorithms are typically not guaranteed to find a solution
if one exists, but they are typically either probabilistically
complete [1] or resolution complete [2]. One of the key
problems for both probabilistically complete and resolution
complete planners is, thus, the practical question of how long
the algorithm should search for a solution before concluding
that none exists. This question is the key motivation for our
research. In particular, given an algorithm that can prove
that a collision-free path does not exist for given initial and
goal configurations, a sampling-based planner can use this
algorithm to determine when to terminate its search.

To determine whether a path exists for two configurations,
our algorithm attempts to provide a constructive proof that
the two configurations lie in disjoint components of the
free configuration space. In particular, our algorithm uses a
sampling-based approach to construct a set of simplices that
(i) lies entirely within the configuration space obstacle region
Q\Qfree, and (ii) separates the initial and goal configurations.
We use simplices derived from the alpha shape of a set of
weighted sample points in the configuration space obstacle
region—in this context they are n-balls [3]. For a sample
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x ∈ Q\Qfree, we calculate a lower bound on the generalized
penetration depth ρx at x [4] (which gives a bound for the
shortest path that would remove the robot to Qfree). The ball
of radius ρx at x lies within Q\Qfree, and thus the resulting
simplices will also be contained within Q\Qfree. As sampling
continues, the union of balls asymptotically approximates the
configuration space obstacle region.

Our algorithm can be viewed as a supplementary check
for probablistic or resolution complete planners to determine
whether or not they should keep searching for a path or
increase resolution, respectively. It can be run in parallel with
a more traditional planner attempting to find a collision-free
path. We hope to replace the heuristics of these planners with
a way to determine whether or not search should be contin-
ued. Currently, only R3 is supported in an implementation,
but the proposed method extends easily to higher dimensions.

The main contributions of this paper are to offer an
alternate solution to the non-termination problem faced by
many modern, sampling-based planners, and to introduce α-
shapes [5] as an effective tool for path planning. By focusing
only on the topological question of whether or not a path
exists between two points (are they in the same connected
component?), we demonstrate that an answer to this question
can be generated for spherical obstacle sets in R3. The worst
case runtime of our algorithm on a set of balls is O(n2) with
n the number of balls to construct the query structure, and
O(m), where m is the number of cells generated by the
algorithm, to check if two points are connected.

In what follows, Section II discusses related work, Sec-
tion III gives a mathematical problem statement, Section IV
provides the necessary background on α-shapes, Section V
describes our proposed algorithms, and Section VI shows
preliminary results.

II. RELATED WORK

A key aspect of the motion planning problem is that
configurations that place the robot in collision with obstacles
must be avoided. Early attempts at motion planning focused
on the exact motion planning problem, that is, given a
configuration space, an obstacle space, and two points in the
free configuration space(configuration space with the config-
urations that intersect obstacles removed), does there exist
a continuous path between the two that does not intersect
any obstacle, and if one exists, specify one, i.e. complete.
This as stated for polygonal obstacles is NP-hard as shown
in [6]. Classical work in complete motion planning include
the piano mover’s problem, [7], [8], cylindrical algebraic
decomposition, [9]–[11], and Canny roadmap algorithm [6],
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[12]. These planners worked with very general obstacle sets,
and as such their complexity was high.

As the exact motion problem has been seen to be in-
tractable in high dimensions, newer approaches to the motion
planning problem are based on approximation and sampling.
The cell decomposition approaches have been generalized
to approximate cell decomposition [2]. Other methods that
have been very successful and have seen many applications
in industry for planning in higher dimensional spaces are the
Probablistic Roadmap [13] and Rapidly-Expanding Random
Tree [14]. These methods take random sample points in the
configuration space, test if they intersect the obstacle, and if
they do not then connect the point to some graph structure.
This graph structure is searched to find paths between sample
points, and then query points are connected to the graphs.
There is no stopping condition for when the resolution of
the planner is small enough or when enough points have
been sampled and connected to the graph to capture all
of the topology of the ambient configuration space; there
are just heuristics. This results in poor performance when a
large number of path planning problems must be executed,
especially when paths do not exist in several of the plan-
ning queries. This problem of sampling methods must be
addressed before path planning can effectively be used as a
black box subroutine in larger robotic applications.

There have been several attempts to solve this problem.
In [15], a method is given to construct a polynomial such
that the zero set is contained within the obstacle, and the
start and end configurations evalute positive and negative
respectively. In the paper by Basch, et al. [16], an approach is
used to determine the connectivity of small passages within
the obstacle space, an area which sampling based methods
have a difficulty solving. The method examines the point
when a particular ratio of the robot has passed through the
gap, shrinks the robot, and then samples orientations of the
robot to show that none can exist that are not in collision at
that ratio. In the papers on fat obstacles by van der Stappen
et al. [17], [18], definitions of ”fat” obstacles are given and
the amount of multiple contacts between polygonal robots
and these fat obstacles is proved to be O(n), and it is shown
that motion planning using fat obstacles is less complex than
in general. In these papers, the definition of fat given imply
that spheres are the maximally fat objects, and so in our
framework, we have reason to believe that the complexity of
the motion planning problem will be reduced.

More recently, new methods in the disconnection problem
have been applied by L. Zhang et al. Our work is inspired
by these results. In [4], [19]–[21], the authors provided a
method of using approximate cell decomposition and c-
obstacle queries to determine when no path exists between
two configurations. They decompose a configuration space
into a set of geometric primitives as cells and use c-
obstacle queries, built upon from methods in [22], to prove
that the entire cell is contained within the free space or
collision space. The geometric primitives used in this case
are rectangles. The authors are able to efficiently prove
path non existence for queries in configuration spaces with

low dimensions. The method divides the space into cells of
varying width, and then for each cell perform a c-obstacle
query. They utilize the notion of penetration depth in order
to obtain a lower bound on the minimum distance that the
robot can travel before escaping collision with the obstacle.
If an upper bound on the robot’s motion within a cell is
lower than this penetration depth, then we may conclude
that the entire cell is contained in the collision space. They
have a corresponding check for a cell’s inclusion within the
free space, by generating a bound on the separation distance
between the robot and the obstacle, and thus can prove that
a cell is contained within the free space. By partitioning the
configuration space in this way, they show that if every path
from the start cell to the end cell travels through a cell that is
completely contained within the obstacle, then no path can
exist between the start configuration and end configuration.
Their notion of generalized penetration depth in [4] is what
allows us to calculate configuration space spheres.

We adopt a similar framework but use a different ge-
ometric primitive—a simplex (within a triangulation). We
construct simplices from sampled points. This allows our
cell decomposition to have less axis-constrained structure,
as we can sample points from any distribution and construct
a cell decomposition around those points. However, this
comes at an increased cost of maintaining a triangulation. We
discuss the advantages and disadvantages of using simplices
as the primitive instead of rectangles, and present preliminary
results with an implementation of the proposed algorithms.

III. PROBLEM STATEMENT

We are given: [a1, b1] × [a2, b2] × [a3, b3] = Q ⊆ R3,
with the standard metric, two points xs, xg , and a set of
closed spherical obstacles O = {Bri(xi)}i∈A for some finite
indexing set A ⊂ N. We assume Bri(xi) ⊆ Q\Qfree for each
i, given as a set of ordered 4-tuples {(xi, yi, zi, ri)| i ∈ A}
where (xi, yi, zi) are the coordinates of the center of the
sphere and ri is the radius of the sphere. In our notation,
Br(v) = {x ∈ Q| d(x, v) ≤ r}. We want to know if there
exist a continuous curve γ : [0, 1]→ Q̃free, where γ(0) = qs,
γ(1) = qg , and Qfree ⊆ Q̃free = Q\O, for O = ∪O ⊆
Q\Qfree. The question is true if we can find such a path.
Showing that there exists no path is in general more difficult
than finding a path, since only one path need be found to
show that one exists, but proving that there exists no path is
a statement about the space of all paths.

IV. ALPHA SHAPES AS GEOMETRIC PRIMITIVES

We discuss α-shapes in some detail since they are the
primary tool for our algorithm. To the authors’ knowledge,
α-shapes have not been used explicitly for motion planning,
but they have been widely applied in geometry, biology,
and chemistry as a general purpose geometric modeling and
topological tool. α-shapes are the analogue in our algorithm
to the rectangular cell decomposition used in [19], and they
contain all of the simplices used as cells. If the reader is
familiar with α-shapes, weighted α-shapes, and the nerve
theorem specialized to α-shapes, this section may be skipped.
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Fig. 1. Example of 2D weighted α-shapes. The α-shape is the simplicial
complex defined by the blue lines; the balls it represents are in yellow. Image
from http://www.geom.uiuc.edu/ mucke/GeomDir/shapes95/xabs.html.

For a complete treatment of α-shapes, see [5], for weighted
α-shapes, [3], and for a thorough discussion of these and
related topics, [23]. Note that everything in the following
generalizes to Rn, instead of just R3 as treated here.

A. Introduction to α-shapes

We first define a simplicial complex D: a collection of
simplices such that if ∆T ⊆ D, then if U ⊆ T , we have
∆U ⊆ D and also that the intersection of two simplices
in D is either empty or another simplex in D. The α-
shape of a set of points S is a generalization of the convex
hull of those points. H. Edelsbrunner et al. introduced them
in [24] for a set of points in the plane. They were later
extended to the three dimensional case in [5], and to arbitrary
dimension in [3]. The α-shape is a one-parameter family of
polytopes that are an attempt to quantify the ’shape’ of a
point set(parameterized by postive real α). When α = 0, the
alpha shape of S is simply S itself. When α =∞, we have
that the alpha shape of S is equivalent to the convex hull of
S. For intermediate α, the α-shape is more complicated.

The α-shape for 0 < α <∞ is best described by analogy.
Imagine that the points in S are hard rocks and every other
point in R3 is soft dirt. Then take a spherical shovel of radius
α and carve out everywhere that the shovel can fit without
colliding with a point in S. Then flatten out the curves so that
what is left consists of points in S, edges between two points,
triangles between three points, and tetrahedra between four.
α-shapes are important to us because they have a natural

interpretation for a union of balls, or a space-filling diagram
as they are known in chemistry and biology. Let S be a set
of points, S = {vi}. Take a ball centered at each point in
S with radius r, SB = {Br(vi)}, and intersect each with
the voronoi cell of the center of the voronoi diagram of S.
The result is a set of truncated balls, where they are truncated
along intersections with other balls. We construct a simplicial
complex Sr on S, by letting the 0-simplices in Sr be S. A 1-
simplex exists in Sr between two points in S if their truncated
balls intersect. A 2-simplex exists in Sr between three points
in S if their truncated balls intersect, and finally a 3-simplex
exists in Sr between four points in S if their truncated balls
intersect. The result is that Sr = Sα for α = r.

The result is that α-shapes are a very natural way to reduce
a set of balls to a simplicial complex. The nerve theorem,
[23], specialized to this case, states that the union of balls in
SB is homotopy equivalent to the alpha shape Sα for α = r.

Thus, whenever SB has a void or tunnel, Sα does too, and
they correspond exactly. There is actually a stronger property,
that the union of balls deformation retracts onto the alpha
shape [5]. Sα captures the topology of the union of balls,
and packages it in a nice computable form.

B. Connection to Delaunay Triangulation

The α-shape is closely related to another object, the
Delaunay Triangulation. The Delaunay Triangulation of S
in R3, denoted D, is the collection of k-simplices ∆T for
0 ≤ k ≤ 3 such that there are open empty balls b (of any
radius) with ∂b ∩ S = T . This forms a simplicial complex.
So a simplex ∆T ∈ D if and only if ∃α ≥ 0 so that ∆T is
α-exposed. This implies that Sα ⊆ D for each α. The union
of the simplices in the Delaunay Triangulation of S is the
convex hull of S, so we have that S∞ = D. The Delaunay
Triangulation has been studied extensively, and there exist
algorithms for computing it in arbitrary dimension [25], [26].

We can exploit the relationship between the α-shape of S
and the Delaunay Triangulation of S. To calculate the entire
family of α-shapes, we use the fact that each α-shape is a
subset of the Delaunay Triangulation, and simply calculate
the Delaunay Triangulation of S. For each simplex in D, we
calculate the α-interval in which it is a member of Sα. We
would also like to know the intervals for which each simplex
in D is on the boundary of the α-shape, and also when it is
interior or exterior to the whole α-shape as a solid. Refer to
[5] for a discussion of these intervals and how to compute
them. To us, only the 3-simplices that are exterior to S0, and
the boundary faces to the 0-shape will be important.

C. Weighted α-shapes

The above results are only for unions of balls that
have the same radius, but extend using a generalization of
the Delaunay Triangulation, the Regular Triangulation. The
Regular Triangulation is constructed on a set of weighted
points in Euclidean space, where the weight becomes the
squared radius of a ball centered at each point. The α-shape
framework extends to subsets of the Regular Triangulation
by using these weights [3]. The weighted α-shape captures
the topology of the union of a set of balls with different
radii, with the radii specified by a combination of the weights
on the points and α. Figure 1 shows an example weighted
α-shape in 2D. Algorithms for computing the Regular Tri-
angulation also exist, and we follow the same method for
computing the weighted α-shape by first computing the
Regular Triangulation and then computing the α-interval
for each simplex in the Regular Triangulation such that the
simplex is in the α-shape. In R3, the Regular Triangulation of
weighted points may be computed in worst-case time O(n2)
where n is the number of points. This runtime dominates the
calculation of the whole family of α-shapes. We use CGAL
to compute weighted α-shapes for our input set.

V. ALGORITHM TO PROVE PATH NON-EXISTENCE

In this section we develop the necessary algorithms to
prove that no path exists between two points. We begin
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by discussing how to generate balls to use as the weighted
points as input to an α-shape. We then discuss how to use
the resulting α-shape to show path non existence.

A. Generating balls

In [4], the authors calculate a lower bound on separation
distance (or penetration depth) for the center of each of their
cells. They then reason that if the maximum workplace path
length by moving from that configuration to another is less
than this distance, then the new configuration is still not in
collision (in collision respectively). This approach was taken
in [22] to prove that the path between two configurations is
contained in the free space. The methods in [4] can be viewed
as a multi-dimensional extension of [22] for free cell queries
using separation distance, and for collision cell queries using
penetration depth. The approach we take is to sample points
using some distribution (uniform in our implementation), and
then for each sampled point x, if x is in collision obtain a
lower bound on penetration depth, say ρx. This defines a ball
Bρx(x) = {y ∈ Q| d(x, y) ≤ ρx}, such that if the movement
between x and any other point y results in every point on the
robot travelling less than ρx distance in the workspace, then
y ∈ Bρx(x). [4] utilizes this ball implicitly, by setting y to a
corner of the given cell, and then determining the maximum
distance traveled by the robot between x and y.

We choose a metric on the configuration space that is a
lower bound on the length of the motion of any point on
the robot between two configurations. In many cases we
can scale the axis of the configuration space in order for
the standard euclidean metric to be such a bound [27], and
we restrict ourselves to those cases here. Thus, when we
obtain a bound on the penetration depth of a point, Bρx(x) is
actually a euclidean ball centered at x, and we also have that
Bρx ⊆ (Q\Qfree). So every time we sample a point, if it is in
collision, we can directly obtain some subset of the collision
space that is not measure zero. In this way we can sample
balls instead of points and thus construct an approximation
of the collision space directly by using balls. We then use
these sampled balls as the basis for our α-shape algorithm.

B. Path non-existence

Now we have established a framework for generating
and asking questions about the union of a set of balls of
varying radii: the family of weighted α-shapes. From the
nerve theorem, the union of balls and the α-shape that
corresponds to it have the same homotopy type. Thus, when a
simplex is internal to the α-shape, we know that the simplex
is completely contained within the union of balls, and by
extension the collision space. We can exploit this fact to learn
about the topology of the union of balls in space, and since
the union of balls is a subset of the collision space, we learn
about its topology by considering all of the solid tetrahedra in
R that are not in the α-shape for a given α (those 3-simplices
exterior to the shape for a given α). Taken together with all
of the configuration space that is not in the convex hull of
the points in S (and thus not in any simplex of the Regular
Triangulation of S), they completely capture the topology of

Algorithm 1 Compute Connected Components(O)
Require: O, Sphere Set
Ensure: DS, Disjoint Set of connected exterior 3-simplices
R ← Compute Alpha Shape(O, α = 0)
T ← Exterior Finite 3 Simplices(R)
DS ← Make Sets From(T )
DS.Make Set(infinite tetrahedron)
for all Ti ∈ T do

for all Tj ∈ Neighbor(Ti) do
if Classification(Tj) = EXTERIOR then

if Classification(Joining Face(Ti, Tj)) = EXTE-
RIOR then

DS.Union Sets(Ti, Tj)
end if

end if
end for

end for

our approximation to the free configuration space. Whenever
a path exists in the free configuration space between two
points, we can find a path of connected 3-simplices in R\Sα
(along with one cell for the complement of the convex hull)
that corresponds to that path, and if our approximation has
sufficient resolution, the converse is true as well.

Algorithm 1 describes the process. Given an input set of
balls O, we construct a weighted 0-shape S0, where the
points in S0 are the centers of the balls of O, and the weights
on the points are the various radii squared of the balls in
O. Thus, the 0-shape we describe has the same homotopy
type as the union of the balls in O. In order to calculate
the 0-shape, we calculate the Regular Triangulation of these
weighted points, R, and calculate the α-shape when α = 0.

We then find all of the 3-simplices that are in R, but not
in S0, by finding all of the 3-simplices that are classified
as EXTERIOR for α = 0. Given a list of these tetrahedra,
T , we find their connected components by using the query:
for each tetrahedron in T , check the neighboring tetrahedra
(there could be up to 4). If the neighboring tetrahedron is
exterior (which includes the case when it is infinite) to S0,
and the face joining the two is exterior to S0, then the two
tetrahedra are connected. We use a disjoint set, or Union-
find structure, to keep track of the connected components of
T , since connected components are equivalence classes. We
add one initial set for the space that is outside of conv(S),
since it is connected, and then perform the same test for an
exterior tetrahedron that bounds conv(S), if the face between
the testing tetrahedron and R3\conv(S) is exterior to S0, we
join those sets.

This will build the structure that will allow us to test
whether or not two points are disconnected by the sphere set
O. We construct a Regular Triangulation in time O(n2) in the
worst case because there can be as many as O(n2) simplices
in R [5]. The rest of the algorithm runs in time O(m), where
m is the number of 3-simplices in R. So the overall runtime
is at most O(n2). We next describe the algorithm that will
perform the query for two sample points. For any two given
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Algorithm 2 Query Connectedness(qs, qg)
Require: qs, qg , Query Points in Qfree
Ensure: Boolean, Existence of a path between qs, qg
Ts ← Tetrahedron Locate(qs)
Tg ← Tetrahedron Locate(qg)
Ss ← Find(Ts)
Sg ← Find(Tg)
if Ss = Sg then

Return(TRUE)
else

Return(FALSE)
end if

points, qs, qg ∈ Qfree, we simply locate the tetrahedra that
each point is located in, Ts, Tg , if the points are in the convex
hull of the centers of the balls in O. If they are not, we say
that they are within the extra infinite tetrahedron that we have
appended to the disjoint sets for Algorithm 1. We then find
the sets within the disjoint set structure that the tetrahedra
are located in, and check to see if they are the same set.
If they are the same set, then they are connected and there
exists a path between the two. If they are in different sets,
there exists no path between the two points and they are
disconnected. This is described below in Algorithm 2. Note
that it also implicitly requires that Algorithm 1 has been run
on an obstacle set O, so that the set query structure exists.

This algorithm’s speed is dependent on the Tetrahe-
dron Locate query. In worst case it will run in time O(m),
again where m is the number of 3-simplices in R. If an
optimized search structure is in place for this location query,
however, this can be brought down. Finding which sets
the tetrahedra are in is essentially constant, as optimized
Union-find structures have O(nα(m,n)) runtime for m set
operations (union, find) on n elements, where α(·, ·) is the
extremely slow growing inverse to the Ackermann function
[28]. Thus, these operations are essentially constant time
operations, and as such, the entire runtime is dominated by
the location query. This algorithm is correct if the locate
calls are correct and the disjoint set structure is initialized
correctly. See Appendix A for a proof of the correctness.

We make use of Algorithms 1 and 2 by sampling balls and
then periodically running both of the algorithms on the set
of balls. If Algorithm 2 returns that no path exists between
two points qs and qg in the 0-shape (Algorithm 2 returns
FALSE), then we know that no path exists in the free space.
If TRUE is returned, then we cannot say anything about path
existence. If no path exists in the 0-shape, it implies that no
path exists between qs and qg that does not pass through one
of the balls that define the α-shape. Since each of the balls
is contained within the obstacle, no path exists between the
points that does not pass through the collision space.

We compare the choice of primitives with that of [19].
Rectangles used as a primitive instead of simplices offers
some advantages and disadvantages. For instance, using
rectangles limits the scaling of the algorithm directly, since
the number of rectangles that a region must be subdivided

into has hard combinatorial complexity. The expected con-
struction time of a triangulation grows exponentially with
respect to dimension, but this is a result of the worst case
number of simplices. In many cases according to [3], the
number of simplices is actually much lower. Rectangles offer
an advantage in that they are easy to maintain. Subdivision
in them always results in the same structure, whereas a
triangulation of points must maintain the regularity property,
and so simplices that were once in the triangulation may
be replaced for others. However, triangulations offer the
advantage that they are not constrained to be axis-aligned,
and thus could approximate curved obstacles better.

VI. PRELIMINARY RESULTS

We have implemented the proposed algorithm for a simple
3-link robotic arm in the plane with polygonal obstacles.
In this section we discuss the preliminary results, how
performance could be improved, and an extension to n-
dimensional α-shapes, and to a hybrid planner, as in [29].

A. Robot Link System

The robot system that we use for our simulation is a 3
revolute joint robotic arm with joint lengths {j1, j2, j3}. The
first joint’s base is fixed at (0, 0). From [27] 8.5.1.3 and 5.3.4,
we can linearly scale our coordinate axes by the maximum
radius of the robot arm that can rotate around each given
joint. Then, the standard euclidean metric on the configura-
tion space is an upper bound on the maximum path length
by any point on the robot between two configurations, as
described earlier. In our implementation, this results in a very
conservative estimate on the collision space surrounding a
point, as the euclidean metric assumption is fairly restrictive.
A large number of samples are required to make up for this.

We can specify any two points in the configuration
space and we can sample balls to determine if the points
are disconnected. We utilized CGAL [30] to calculate α-
shapes, and we utilized SOLID collision detection library
(obtained at http://www.dtecta.com/) for collision detection
and penetration depth calculations, which is based off of
[31]. Several examples of configurations that our algorithm
proved that no path exists between are shown below, along
with the corresponding 0-shapes. In the first example, path
non existence was proven after sampling 36000 points. In the
second, path non existence was proven after sampling 30000.
The large number of samples required to prove disconnection
is likely a combined result of our sampling scheme, the
joint limits, and our upper bound on the robot’s motion.
The approximation to Q\Qfree quickly approaches the overall
shape, but the small holes between the regular collision
points and joint limit collision points cause non-existence
proofs to take longer than expected. Since we are sampling
uniformly, we rely on random chance for holes to be filled.

B. Implementation Issues

There were a few implementation issues for this simula-
tion. First, we impose joint limit constraints on the robot
in order to avoid identifying equivalent cells in a periodic
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Fig. 2. A 3-link robot arm at two different configurations and obstacle
configurations. The start configuration is in green, the end configuration is
in purple, and the obstacles are red.

Fig. 3. The 0-shape for planning between the first configuration and the
second in the above examples. The white tetrahedra are interior to the 0-
shape(and thus a subset of Q\Qfree), the green tetrahedron is the start cell,
and the red tetrahedron is the end cell.

triangulation. Since the α-shape is homotopy equivalent to
the union of balls, unless we sample balls to make up the
boundary of the joint limits, our algorithm will likely not
prove path non-existence. There was some nuance in select-
ing the correct balls to sample outside of the joint limits,
since we would like to fill the entire boundary of the joint
limit constraints with balls, but this increases the runtime of
the triangulation and α-shape generation. A solution was to
sample balls in a region that is some factor R > 1 larger
than the configuration space that satisfies joint limits, and
then consider anything outside of the limits to be in collision
with penetration depth equal to the maximum of the distance
to the joint limits and the actual penetration depth if the
configuration is in collision. This ensures overlap into the
configuration space for samples that are actually in collision
and outside of joint limits. However, work is still being done
as this scheme results in a large number of required samples
to prove disconnection. The 0-shapes shown in the figures are
not the shapes that prove disconnection; they are the shape
that occurs when sampling within joint limits. When figures
are produced when sampling outside of the joint limits as
well, the entire 0-shape appears to be solid from the outside.
If we would like to not enforce joint limits, we must take
special care and utilize a periodic triangulation package that
explicitly identifies cells that occur on a periodic axis such
as CGAL’s 3d Periodic Triangulation package.

An issue that affected performance was the CGAL li-
brary’s implementation of α-shapes. Their implementation
of the regular triangulation was fully dynamic (supports
insertions and deletions), but the α-shape implementation
was not. So the entire α-shape is periodically constructed
from the regular triangulation, which has many redundant
calculations. This re-computation dominated the runtime of
the entire algorithm, and so a more dynamic solution is

necessary to have competitive performance. Note that this
is not a fundamental limitation of α-shapes, but rather just
the given implementation, since we can simply compute
the alpha structure of each new simplex in a dynamic
triangulation as we insert (which we can do in O(1) time in
fixed dimension). This pushes the runtime of our algorithm
to O(n3) in our implementation, as we must periodically
reconstruct the entire triangulation (but is still theoretically
only O(n2) with a better implementation).

C. Extensions

There are several possible useful extensions to this al-
gorithm. Since the weighted α-shape construction proceeds
with very few modifications for any dimension of euclidean
space, we can apply the entire algorithm to determine
whether or not query points are disconnected within a high-
dimensional configuration space by hyper-balls. However,
the authors are unaware of any library that computes high
dimensional α-shapes, as their use as a geometric modeling
and visualization tool is mostly lost in that setting. Since we
can reconstruct any obstacle space with hyper-spheres, this
may be an effective way of disconnection proving for high
dimensional space. We note that again the runtime of such
an algorithm would be dominated by the construction of the
n-d Delaunay or Regular Triangulation, as it can contain up
to O(n

d
2 ) simplices, for n spheres and d the dimension of

the space, and thus is bounded by that runtime [3]. Note that
this bound is lower than the bound for the Canny roadmap
algorithm, however, so queries of disconnection run faster
than constructing an exact path for these sphere sets.

In our construction, we only utilize the α-shape family for
α = 0. We could instead grow the obstacle set by increasing
α. We could maintain a family of disjoint sets, parameterized
by increasing α, such that for obstacles grown by any size,
we could query whether or not two points can reach each
other in the free space. This essentially deals with uncertainty
about the obstacle set. By varying the size of the obstacle set,
we can check the robustness of a path between two points, by
noting the α in which the two points become disconnected by
the obstacles. Since many algorithms that run for α-shapes
run on them incrementally for increasing or decreasing α,
and in particular those for calculating the betti numbers of the
α-shape (which quantify the topological characteristics), we
can use this information to filter for interesting α’s in which
the topology of the α-shape changes. We then only update
the disjoint set structure for these α’s, utilizing the simplex
that the interesting α adds or removes. In this way, we can
construct the set structure for all α, and allow for queries for
different α’s, or give the α-robustness of a given connectivity
result, as a measure of how connected two points are.

We can utilize the framework in [29], [19] to augment our
path non-existence prover with a smarter sampling strategy
and path planner. Instead of simply using a disjoing set
structure to store the connected components of the exterior
simplices, we can instead attempt to find a path of external
simplices between qs and qg . Then, if a potential path has
been found, then we adaptively sample within the cells in
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the returned path. This directs the sampling to potential paths
which require more resolution to determine if a path exists or
not. If the sampling strategy is made adaptive in this manner,
then our algorithm can be directly compared to those given
in [19] for performance and robustness issues.

VII. CONCLUSION

We have presented an algorithm that samples euclidean
balls that are completely contained within the collision space
obstacle. It then determines if no path exists through the
union of balls, and if none does, then no path exists through
the larger collision space. The main difference between this
algorithm and the one proposed in [19] is in the geomet-
ric primitive used to decompose the configuration space.
In our algorithm, the primitives used are simplices in a
triangulation, and in [19], the primitives are rectangular cells.
This research applies α-shapes, a geometric and topological
modeling tool, in a new way applied to robotic path planning.
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APPENDIX

We assume that path connectedness is equivalent to con-
nectedness in our topological spaces.

Theorem 1.1: qs, qg ∈ Y = R3\(∪Br(vi)∈OBr(vi)) are
path connected in Y if and only if they are path connected
in X = R3\S0.

Proof: Since ∪Br(vi)∈OBr(vi) deformation retracts
onto S0, we have that they have the same number of
voids, and thus their complements have the same number
of connected components. Since S0 ⊆ ∪Br(vi)∈OBr(vi), we
have that Y ⊆ X . Thus, each connected component of Y
is a subset of some connected component of X , but since
they have the same number, they correspond exactly. Since
qs, qg ∈ Y , they must also be in X , and so we have that
they are in the same connected component in Y if any only
if they are in the same connected component in X .

Now we show that Algorithm 1 produces the connected
components of R3\S0. Fix qs, qg ∈ R3\(∪Br(vi)∈OBr(vi))
in the same connected component. Fix a collision free path
γ (with respect to R3\(∪Br(vi)∈OBr(vi))) between qs and
qg . Let {Si} be the finite set of cells and faces that γ([0, 1])
intersects. Each has a point in it that does not intersect any
ball in O—the point on the path that intersects the face
or cell. Thus, the face or cell is not fully contained in the
obstacle space and is not a part of the alpha shape, hence
is EXTERIOR. So the algorithm that links exterior cells by
exterior faces produces the correct connected components.
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