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Abstract—The P300-based speller is a well-established
brain–computer interface for communication. It displays a
matrix of objects on the computer screen, flashes each object in
sequence, and looks for a P300 response induced by flashing the
desired object. Most existing P300 spellers uses a fixed set of flash
objects. We demonstrate that performance can be significantly
improved by sequential selections from a hierarchy of flash sets
containing variable number of objects. Theoretically, the optimal
hierarchy of flash sets—with respect to a given statistical language
model—can be found by solving a stochastic control problem of
low computational complexity. Experimentally, statistical analysis
demonstrates that the average time per output character at 85%
accuracy is reduced by over 50% using our variable-flash-set
approach as compared to traditional fixed-flash-set spellers.

Index Terms—Brain–computer interfaces (BCIs), hierarchical
flash sets, stochastic dynamic programming, P300.

I. INTRODUCTION

B RAIN–COMPUTER interfaces (BCIs) take measure-
ments of brain activity and use them as inputs to control

external devices. By shortcutting the motor system, BCIs have
enabled a variety of activities that might otherwise be difficult
or impossible for people with impaired sensory-motor function
[1].

In this paper, we consider the use of BCIs to restore text
communication for people who are unable to operate keyboards
[2]–[5]. We focus exclusively on text communication using the
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P300-based speller [2], [3]. This well-established paradigm
takes advantage of the P300 event-related potential (ERP),
which is a response to infrequent but anticipated stimuli that
can be observed as a deflection in the electroencephalogram
(EEG)—often called a P300 response—approximately 300
ms after each relevant stimulus. The P300-based speller, in
particular, uses visual stimuli to elicit P300 responses. A com-
puter screen displays to the human subject a matrix of possible
characters, subsets of which are illuminated in random order.
The subject keeps a silent mental count of how many times
their desired character has been illuminated. Each time this
happens, a P300 response is observed in EEG. By detecting
a sequence of P300 responses, the P300-based speller allows
users to specify a sequence of characters, one at a time.

Perhaps the most widely used P300-based speller is the one
introduced by Farwell and Donchin in 1988 [2]. In this case, 26
English characters and 10 digits are displayed in a matrix of six
rows and six columns. Characters are illuminated in groups, one
row or column at a time. A P300 response occurs when this row
or column includes the desired character. After each row and
column has been illuminated for a prespecified number of times,
a statistical decision is made about which character was most
likely to have been the desired one. We will call this approach
the “row-column” (RC) paradigm.

Two decades of work since [2] has explored various ways to
improve the performance of P300-based spellers. Most of this
work has focused on making the detection of P300 signals more
robust, either through better signal processing and classification
algorithms, as summarized in [6], or through better ways to elicit
P300 responses. For example, in contrast to illuminating the
entire rows and columns as in [2], illuminating single charac-
ters has been found to improve classification results by eliciting
much more robust and distinguishable P300 responses, presum-
ably due to the much lower frequency of illuminating the desired
character [7], [8]. We shall term this the “single-character” (SC)
paradigm.

However, most P300-based spellers typically need to flash a
fixed set of objects, and each object flashing more than once
so that its responses can be averaged. It causes a delay which
is proportional to the number of objects in a flash set and the
number of trials used in averaging. This delay adds up quickly,
and can easily approach half a minute for a conventional para-
digm to spell a single character.

Recent work has focused on reducing this delay by using a
variable number of trials to perform classification on a fixed
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set of flash objects. In [9], the theoretical bit rate was signif-
icantly boosted by maintaining a posterior belief on charac-
ters and making a classification when that belief is sufficiently
strong towards one character. For SC paradigms, Markov deci-
sion theory [10] has been employed to determine the optimal
pattern of character illuminations in a flash set so that more
likely characters are queried more often [11]. However, none
of these studies have considered variable flash sets.

The purpose of this paper is to introduce a novel paradigm,
called the “dynamic-programming” (DP) paradigm, which
sequentially presents a hierarchy of nested flash sets, each
of which represents a subset of all possible characters. The
optimal hierarchy of flash sets–with respect to a given statistical
language model—can be found by solving a dynamic program-
ming problem of low computational complexity [12]. We show
that in any optimal strategy, more likely characters appear early
on for querying in the hierarchy. For example, in the English
language, after the characters “ ” and “ ”, it is much more
likely that a vowel will be next as opposed to a consonant.
So rather than showing all the possible stimuli, one strategy
would be to only include vowels in the next flash set; if no
vowel was selected, then a subsequent group of flash sets would
contain the remaining constants. In the worst case, the subject
might have to navigate through multiple flash sets to select one
desired symbol. But given a good statistical language model,
this happens rarely. By using a smaller flash set on average, we
reduce the expected time to specify a single character.

In Section II, we define our terminology and illustrate it with
a simple example. In Section III, we develop the theory under-
lying the DP paradigm. In Section IV, we describe both our im-
plementation of DP in the BCI2000 framework [13] and our
experimental protocol for validation with human subjects. In
Section V, we present experimental results and compare the per-
formances. Statistical analysis shows that the average time per
character with 85% accuracy is reduced by over 50% using DP
paradigm as compared to RC and SC.

II. DEFINITIONS

A. General Statement

Throughout this paper, we will be considering a scenario
where a subject attempts to spell a sequence of characters
sequentially. To specify a specific character in the SC and RC
paradigms, the system randomly illuminates all the characters.
The DP paradigm first queries a subset of characters; if the
desired one lies in that subset, it is classified. If not, the system
queries another subset, and this continues until the desired
character is specified. The optimal way of selecting these sub-
sets will be specified in Section III. The purpose of this section
is to simultaneously describe all three paradigms—RC, SC,
and DP—with unified set-theoretic terminologies. We illustrate
these definitions with simple alphabets, examples, and figures.

Set Theory. Denote as the empty set. For any set , denote
its size. Denote as the set of all subsets of the set .

Note that . For two sets and , denote
as the set of all elements of that are not contained in ,

. We denote random variables by

Fig. 1. An example illustrates the relevant time scales for DP paradigm by
showing the sequence of events to spell the word “CAB” using the setup in
Fig. 2. The runs are the time scale of classifications, while the rounds are the
time scale of updating the sequence spelled out so far.

Fig. 2. Example display matrix containing only “A”,“B”, “C”, and “�”.

capital letters (e.g., ) and sample-path realizations by lower-
case letters (e.g., ).

B. Specifics According to Time Scale

In this section we iterate through definitions according to time
scales, from broad to narrow.

1) Round: Denote as the set of all possible char-
acters in any sentence the subject wants to convey.
Throughout the remainder of this paper, we assume

" " " " " , where “_” represents the
space character.

A round is indexed by and pertains to the time scale over
which a subject sequentially spells a character . The
spelled sequence at the end of round is denoted by

. See Fig. 1 (top), where " and
" " .

2) Run: A run is indexed by and pertains to the time scale
over which classifications occur.

Control Signals. Denote as a set of additional symbols,
that convey control-like signals in the event of misclassifica-
tion or sequentially navigating subsets of . In real implemen-
tations, " , denoting the backspace char-
acter to delete the previously selected symbol in the event of a
misclassification. In real implementations for the DP paradigm,

" " . If lies in the subset being queried, the
subject selects it. Otherwise, the subject selects the symbol “ ”
and the next subset of is queried after this classification.

Alphabet and Display Matrix. The alphabet containing all
possible symbols that can be classified during a run is given by

. Denote to be a display matrix in predetermined
configuration to present . For a simple illustration limited to
this section, let " " " and " , and they
are arranged in the 2 2 display matrix in Fig. 2.

Query Subsets and Policies. The query subset, , is
the subset of symbols in that are illuminated during a run. For
the RC and SC paradigms, . For the DP paradigm, on
any run is allowed to be a subset of . Any sequence

for which will be termed a policy.
In run , the system first queries a subset of symbols at depth
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Fig. 3. Examples illustrating the definitions of flash objects, flash sets, and tree
of policy.

, termed . If the desired character lies in , it
is classified. If not, then the “other” symbol denoted by “ ” is
classified. At the next run the depth becomes and the
system queries the subset at depth , . This continues
until is classified. Denote as the symbol classified
after run (see Fig. 1 middle). Note that can be specified
as a tree where leafs lie in and only “ ” among all siblings in
the same level can have children. Based on the setup of Fig. 2,
the example DP paradigm in the inset of Fig. 3 has a tree of two
flash sets, where

" " " "

Note that RC and SC can be viewed as having a policy
, as shown in Fig. 3 for an example. Run and depth

evolve on the same time scale. For the RC and SC paradigms,
it is always the case that and ; thus run
always pertains to a new round . For the DP paradigm,
if or ", then at time the depth
becomes 1; otherwise it becomes (see Fig. 1 bottom).

Flash Object and Flash sets. During any run, the detailed
illumination of all possible characters in depends upon the
paradigms RC, SC, and DP. In general, subsets of characters of

, termed flash objects , are simultaneously illuminated
in a random order until a classification is made. For any query
subset , the set of all possible flash objects is called a flash set
and is denoted by . As illustrated by the example in Fig. 3,
for RC ; moreover, flash objects always pertain to either
rows or columns

" " " "

" " " "

For both the SC and DP paradigms, flash objects always consist
of singleton sets, because no two characters are ever simulta-
neously illuminated. One small difference between SC and DP,
however, is that the symbol “ ” can only be illuminated in DP.
For the example in Fig. 3, the SC has

" " "

Fig. 4. Examples illustrates trial, run and SOA in RC. It is straightforward to
generalize to SC and DP.

while the DP has

" " " "

" " " "

Trials. Any run consists of trials. Each trial is the random
sequence of illuminating each flash object in a given flash set

. The time between the illumination onsets of two successive
flash objects is called stimulus onset asynchrony (SOA). This is
illustrated in upper half of Fig. 4.

To be more precise and succinct, the process of sequential
spelling under all three paradigms is provided in unified pseudo-
code below.

, , ,

while do

randomly illuminate flash set

classified from

if then

re-calculate

else if " then

remove last character from

else

end if

end while
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Fig. 5. Tree representation of the policy � pertaining to first illuminating
vowels, followed by consonants.

III. THEORY FOR THE DP PARADIGM

In this section we consider the DP paradigm where variable-
sized flash sets can be adaptively chosen. We also consider the
following idealized assumption:

Assumption 1:
a) Classification is 100% accurate.
b) " .
c) .
Note that Assumption 1b and 1c follow naturally as a conse-

quenceofAssumption1a.This leadstothefollowingproposition.
Proposition 1: For each round , .

During run with associated query subset , the time taken to
spell is proportional to the size of the flash set, .

Suppose the language, denoted by , is composed of the 26
characters of the English alphabet and presented by a 5 6
display matrix. Denote as the th character in the
sentence the subject would like to spell. If all characters in
were illuminated, the time required to successfully classify

is 11 time units for RC and 26 for SC (given the imple-
mentation in Fig. 8 of Section IV-B, ignoring any symbols
other than the specified here), assuming each flash set is
illuminated once. Suppose " and ". Con-
sider first illuminating a flash set that only has the characters

" " " " " " , where “ ” is focused on by the
subject if is one of the 21 consonants. If the subject indeed
was interested in a vowel, then is classified, only
time units were required, and the system can continue to query
about . If is a consonant, then the subject focuses on
“ ” and then after classification a subsequent flash set must be
illuminated. Suppose the second flash displays the
consonants and then is classified. In this case, the total time
required to convey was time
units. Given " and " the average amount of
time required is given by

" "

" "

If this value is less than or , then this is
a more advantageous approach on average.

Note that any policy (refer to Section II) is in one-to-one
correspondence with a tree of flash sets on , where at each
depth, only one node (“ ”) has descendants. See Fig. 5 for the
example with vowels and consonants. The nodes at depth
1 in the tree, including “ ”, are the symbols that are illuminated
in the first flash set. “ ” has descendants that correspond to the
set of characters that are illuminated in the second flash
set if the first classification is “ ”. This extends until the final
depth of the tree. Denote as the space of all possible trees
on for which one node at any depth has descendants. The time
required to classify for policy is denoted by

(1)

where is the depth in the tree that symbol resides and
is the total number of symbols in the th flash set. For

the example above, , pertains to vowels and the
# character with , and pertains to consonants
with .

Denote the space of all probability distributions on as
. We now define

the average time to spell a character with distribution under
policy as and the optimal policy as

(2)

(3)

Assuming a statistical model for language, for each we de-
fine

(4)

Then the minimal expected time to convey characters
is given by

(5)

(6)

(7)

where (5) follows from the law of iterated expectation; (6) fol-
lows from 1) the statistics of are unaffected by
any policy , and 2) Assumption 1a which implies that ,
and thus , is known at the beginning of round ; and (7)
follows from (2) and (3). A consequence of (7) is that the batch
optimization problem for minimizing expected total time can
be done sequentially given any algorithm that solves (3) for any

. This leads to the algorithm of our adaptive DP par-
adigm that performs (5) sequentially

for to do

Construct using (4).
Find by (3).

while Classifier output is “ ” do

Illuminate .

Find the output of the classifier.

.

end while

Choose as the classifier output.

end for

The statistical language model for is a variable-order
Markov model [14] that will be discussed in more detail in
Section IV. Below, we discuss how (3) can be solved with
dynamic programming.
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A. Finding an Optimal Policy for the Variable-Sized Flash set
Paradigm Using Dynamic Programming

We now demonstrate that solving (3) for with dis-
tribution can be cast as a stochastic shortest path
problem, which falls within the realm of dynamic programming
[10]. We define the control problem as follows.

• . denotes the “state” of the system, which is
the set of characters not yet illuminated. Initially, .

• The action space is the set of allowable actions when
the system is in . An action is a subset of
characters for the flash set that have not been displayed yet

• A policy maps states to actions. specifies what
set of symbols in to illuminate in the current flash set
symbols in have not been illuminated yet. is the set of
all possible mappings; note that each pertains to a tree
representation (see the above discussion and Fig. 5).

• Under Assumption 1a, and the system reaches
a termination state . The state update equation can be suc-
cinctly described as

or
otherwise.

(8)

• denotes the cost incurred while in state and taking
action . The time to classify a character is proportional to
the current flash set size—so we have that

(9)

where the additional 1 in (9) pertains to —which is not in
or but adds to the time to illuminate—except when in

the final flash set.
Note clearly from (8) and (9) that

(10)

where by definition. is a controlled
Markov chain with the following transition law:

(11)

where (11) follows from (8). Note that for any policy ,
. For any , we have that [10]

(12)

where (12) follows from (11) since .

Fig. 6. Representing policy � (left) and � (right) as Huffman trees.

Finding the optimal policy is a stochastic shortest path
problem which can be solved using dynamic programming
[10, p. 365]. The optimal cost function
satisfies Bellman’s equation

and as mentioned above, . Unfortu-
nately, the state space is of size and the action space in
general also has exponential size: . As
such, using a standard approach (e.g., policy iteration or value
iteration [10]) to solve Bellman’s equation requires exponential
complexity. We next illustrate how we can reduce this search
complexity from exponential to linear by making an argument
analogous to the proof of optimality for Huffman coding [15],
[16].

B. Connection to Lossless Data Compression and Reduction
from Exponential to Linear Complexity

Consider the scenario where
" " " " " " " . Assume without

loss of generality that

" " " (13)

Consider the policy which consists of displaying first
" " " , then " " " if the subject selects

“ ”, and finally " " if the subject did not select “ ” nor
“ .” See Fig. 6 for a description of as a tree. Then from (1)
and (2) we have

(14)

This new way to look at the cost leads us to a Huffman code-like
problem [15]. The main difference is that the size of the alphabet
of the output code, the cost incurred at time

(15)

can change at any node in the tree (for example, see left panel
of Fig. 6). Moreover, from (1), we see that the cost function for
any symbol is not just a function of the depth of
in the tree. Nonetheless, we can state the following theorem and
still prove with the same Huffman method that the most likely
characters appear first.

Theorem 1: For any optimal policy that satisfies (3)

(16)
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Proof: We use a proof by contradiction. Suppose that the
policy is optimal but there exists a and a for which

and . For example, when
" " " " " " " and (13) holds, see left

panel of Fig. 6 and let " and ". Construct
another policy whose tree representation is equivalent to
except for the roles of and are reversed (see right panel of
Fig. 6). Note that and have the same topology

(17)

As a consequence, for any

(18)

Therefore

(19)

(20)

(21)

where (19) follows from (14); (20) follows from (18); and
(21) follows from the assumption that and

. Then has strictly smaller expected cost,
and thus this serves as a contradiction.

Assume without loss of generality that

The state space can be collapsed to without loss of opti-
mality so that . The dynamic programming problem
can now be solved in less than iterations using the value it-
eration algorithm [10, p. 373].

C. Motivation for Experiments

A few issues remain unresolved by theoretical discussion, and
demand experimental verifications. First of all, in Assumption
1b there are no classification errors and so no “ ” was consid-
ered. In practice, however, due to classification errors, need to
include “ ”.

Secondly, due to the sequential nature of the DP paradigm,
classification errors could lead to “error propagation,” where
subjects go through multiple flash sets to correct for a single
error. Our theoretical discussion is unable to predict how the
number of trials per run will affect the classification accuracy
for RC, SC, and DP.

Thirdly, DP is expected to outperforms RC and SC when a
statistically “typical” sentence is spelled. In this regard, the neg-
ative logarithm of the probability of a sequence divided by the

Fig. 7. The performances of the three paradigms were simulated for 5 example
sentences, with corresponding NLL/Char labeled above. Costs are measured by
the total number of flash objects needed to spell the sentences assuming 100%
classification accuracy. DP (black) under-performed RC (gray) and SC (white)
when spelling an atypical sentence (number 5).

number of characters in that sequence is denoted by NLL/Char.
Typical sentences have an NLL/Char close to that of the lan-
guage model. When the target sentence is statistically unlikely
(large NLL/Char), DP might under-perform RC or SC. This is
demonstrated by simulating the performances in Fig. 7. Details
of the language model are in Section IV.

For these reasons, the theoretically optimal DP speller need
not always outperform the RC and SC paradigms. The practical
performance of all three may depend on the number of trials

per run in a complicated manner. This motivates the need to
perform experiments to determine the effects of these competing
factors in terms of aggregate system performance.

IV. METHODS

A. Subjects

This study has been approved by the Institutional Review
Board of the University of Illinois, Urbana-Champaign. Data
were collected from 12 healthy adults (six females) between the
age of 18–30. All subjects had normal or corrected-to-normal
vision, and had no prior experience with P300-based BCI.

Each of our subjects performed six experiments, of which two
were using the DP, two using RC, and two using SC. The se-
quence of experiencing the three types of paradigm was ran-
domized over all subjects in each gender group, in such a way
that each of the six permutations of the paradigm orderings were
assigned to one male and one female subject.

B. Visual Displays

In general, all setup is done according to the definitions given
in Section II. Fig. 8 shows the same 5 6 display matrix

" for all the three paradigms.1Note that, in light of how
we defined , we have that

"

"

" "

The number of trials per run, , was set to 25 for DP, 20 for
RC and 8 for SC. The reasons for empirically choosing these

1The comma “,” is merely a placeholder never used.



108 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 20, NO. 1, JANUARY 2012

TABLE I
SPELLING PARADIGM PROPERTIES

Fig. 8. Display matrix �.

values were: 1) to control the length of the experiments to finish
within 10 min, so that the participants do not get too mentally ex-
hausted; 2) to ensure accurate classifications. DP achieved better
empirical performance even though it needed more flashes per
character than RC or SC, as will be shown in Section V.

Specifically, the flash set for RC, contains five rows and
six columns as flash objects, and flash set size .
The flash set for SC contains 28 individual symbols as flash
objects, " " , and flash set size .
The important properties of all three paradigms are summarized
in Table I to highlight the uniqueness of DP.

C. Experimental Paradigm

Each experiment was composed of a preparation, a training
session and a spelling session.

1) Preparation: The subjects were given instructions about
the experiments and were told to sit still and relaxed while trying
to avoid blinking during the flash of the target characters. Elec-
trode impedances are reduced to less than .

2) Training: The subjects fixated on the training sequence
“ATHEOI,” one character at a time. The prompt of target char-
acter was given in a pair of parenthesis following the training
sequence, displayed on top of the display matrix. The subjects
were instructed to how many times the target character was
flashed. The duration of flash was set to 100 ms, and the SOA
was set to 125 ms for all three types of paradigm. The query sub-
sets in each paradigm is briefly highlighted for 500 ms before
each run, and there was a 500 ms pause at the end of each run.
At the end of the session, the coefficients of a classifier were es-
timated by stepwise linear discriminant analysis (SWLDA) [17]
with the training data.

3) Spelling and Statistical Language Model: In the spelling
session, the subjects were required to spell a predetermined se-
quence of characters: “HELLO_WORLD” as seen in Fig. 9.
The DP programs were blind to this information. Using a vari-
able order hidden Markov model for English language [14],
the NLL/Char of this sentence is 0.68, which is typical of this
model.

For DP, every flash set was highlighted for 500 ms before each
run for subjects to locate the desired character, see Fig. 9 for a

series of snapshots of this period. the equivalent periods for RC
and SC were blank resting. The classified letter was appended
to the feedback sequence and displayed for 500 ms at the end of
each run. All other settings were the same as Training. The sub-
jects were told to correct any errors using the backspace “ .”

The statistical model of the English language for DP was
a variable order Markov model, and the associated prediction
by partial matching (PPM) algorithm was implemented in Java
[14]. According to Section III and as shown in Fig. 9, DP dis-
played an optimal flash set each run according to the statistical
model of the immediate character it was inquiring, , which
is drawn according to calculated
by the PPM.

D. Data Acquisition

EEG signals were collected by an Electro-Cap through eight
channels (Fp1, Fz, Pz, P3, P4, P7, P8, and Oz). Fpz was used as
ground, and Cz the reference. Although the standard reference
for P300 is the mastoids or earlobe [18], we used Cz instead.
Judging from Figs. 12 and 13, classification accuracy and P300
morphologies were not hurt. The subjects monitored their own
eye movements (Fp1) to avoid blinking, no further artifact re-
moval techniques were employed. Voltages were amplified by
a low noise amplifier (James-Long Co.), low-pass filtered to
100 Hz (analog), and sampled at 400 Hz by an IOtech Personal
Daq 3000 A/D converter. A notch filter at 60 Hz was applied in
software to eliminate power line noise.

E. Software Setup

The software was adapted from BCI2000 framework Ver-
sion 3.0 [13]. The visual stimuli were configured to display in
a 800 600 pixel area on a 21-in LCD screen, 50 cm away in
front of the subjects. For DP, the conditional probability distri-
butions over all possible next symbols are calculated by PPM
(implemented in Java [14]) and relayed by a Matlab script to
the BCI2000 program.

The SWLDA coefficients were fitted at the end of the training
session [17], using epochs of 600 ms following the onset of
the flashes from all eight channels and down-sampled before
concatenating into a single feature vector. During the spelling
session, feature vectors time-locked to the flash of each stimulus
were generated again, and the dot-product between these vectors
and the SWLDA coefficients are computed as the classification
scores. The scores from multiple flashes for each stimulus were
summed up, and the stimulus with the maximum summed-score
was classified as the attended target.
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Fig. 9. The flash set of each run are highlighted simultaneously for 500 ms at
the beginning of that run, and then they are flashed individually in random se-
quence. (a)–(g) demonstrate how the flash sets evolve across runs in spelling the
first four letters in “HELLO_WORLD”. The first text box in each plot shows the
target sentence, which ends with a parenthesis indicating the target character of
that round. The second text box shows the sequence already spelled out before
that run. The dashed circles indicate the symbols that the subject should choose
at that run. (h) lists the query subsets of all the runs in (a)–(g), each row corre-
sponding to a run.

F. Statistical Analysis by Bootstrapping

In order to statistically characterize the performance of DP,
RC, and SC beyond our specific settings of , we need a perfor-
mance metric that is independent of , therefore we estimated
accuracy curves as a function of actual time by bootstrapping
analysis [19, p. 436] in accordance with well-established proce-
dures [2], [3].

Random re-sampling with replacement was done 400 times
on the feature vectors for each character in “HELLO_WORLD,”
using only the data from spelling sessions. The fraction of cor-
rect classifications from the resamplings is reported as the ac-
curacy.

The average time to spell each actual character was calculated
for each paradigm using 22, although it was done a bit differ-
ently for DP

(22)

Trials that corresponded to choosing the symbol “ ” were also
included in the resampling. However, “ ” was an extra step
unique to DP, it was not considered as a successful spelling

Fig. 10. Accuracy estimated by bootstrapping as a function of the time needed
to spell each character, averaged across all subjects. DP (dot) is at least 50%
faster than RC (square) or SC (triangle) at 85% accuracy.

of an actual character but only added to the cost. Moreover, a
1000 ms pause was also added between characters.

The analysis of average time per character was equivalent to
that of the overall time for the whole sentence.2

V. EXPERIMENTAL RESULTS

A. Spelling Performance Using Bootstrapping

For all paradigms, the spelling speed were obtained from
the accuracy curves plotted as a function of the actual time
consumed per character, including pause between selections,
in Fig. 10. The details of bootstrap analysis were discussed in
Section IV. It can be observed from Fig. 10 that, at 85% accu-
racy threshold, the DP paradigm (dots) has enabled far superior
performance (20 s/char) than RC (squares, 39 s/char, p-value

) and SC (triangles, 68 s/char, p-value ).
The information transfer rate (ITR) is another popular cri-

terion for performance [20]. ITR is defined as ,
where
for an alphabet size of , and the time per character

(min/char) at 85% accuracy threshold is obtained from
Fig. 10, i.e., . The values of for DP, RC, and
SC are 20, 39, and 68 s, respectively (including the time for
selecting error-correcting actions and the pause between selec-
tions). Therefore, DP achieved 11.3 bits/min (bpm), RC 5.8
bpm, and SC 3.3 bpm. This amounts to an improvement of at
least 50% for DP over other conventional approaches.

B. Spelling Performance Using Empirical Data

The best empirical time to completion out of the two exper-
iments done by each subject has been plotted for every type
of paradigm in Fig. 11. The mean completion time ( stan-
dard deviation), averaged across all subjects, was 6.93 ( 0.50)
minutes using DP, compared with 9.30 ( 0.55) minutes using

2To spell a sentence with � characters using � trials per run, DP needs
to use ��� �� total runs; the flash sets pertaining to runs will be of size
�� �� � � � � �� �. RC needs � flash sets of size �� �, while SC needs
� flash sets of size �� �. The total/averaged costs (total/averaged number
of flash objects needed) are obviously only different by a constant factor
���: ����� 	 ��� � 
 � � � 
 �� ������� 	��� � 

� � � 
 �� ����� ����� 	�� ������� 	
�� ����� ����� 	�� ������� 	 �� �����.
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Fig. 11. The empirical time to completion is plotted for every subject. DP (dot)
enabled all subjects to spell significantly faster than RC (square) and SC (tri-
angle).

Fig. 12. The empirical accuracy of spelling is plotted for every subject using
each of the three paradigms. Although not statistically significant, DP (dot) en-
abled equal or higher accuracy than RC (square) and SC (triangle) across all
subjects.

RC and 9.59 ( 0.97) using SC. Welch’s t-test verifies that DP
enables the subjects to spell significantly faster than both RC

and SC
. The DP paradigm has reduced

the time to completion by about 25.5% over the RC paradigm,
and by 27.7% over the SC paradigm. It should be emphasized
that even though the number of trials for DP was unfavorably
set to its disadvantage (25) as compared to the both RC (20) and
SC (8), it still performed the best in terms of completion time,
uniformly across individual subjects (Fig. 11).

The DP paradigm also seemed to have helped improving em-
pirical classification accuracy (Fig. 12), which is defined as the
ratio between the number of correctly classified target char-
acters and the number of total classifications incurred during
spelling. Although Welch’s t-test did not show significance over
RC ( , , ) or SC ( ,

, ), note that the DP enabled equal or higher
accuracy uniformly across all subjects.

Fig. 13. P300 waveforms recorded from Oz are plotted for all subjects
(S1–S12) using each paradigm. The waveform averaged across all subjects
(AVG) are plotted at the bottom. Target and null stimuli are in dark and light
colors respectively.

C. Physiological Data

Fig. 13 plots the P300 waveforms recorded from Oz for all
subjects (S1–S12) using DP, RC, and SC, and the waveforms
averaged across subjects (AVG) are at the bottom. All subjects
showed clear distinctions between the responses to the targets
and the null stimuli. Each subject displayed different waveforms
using different paradigms. Overall, the morphologies closely re-
sembled those in other work [21].

VI. DISCUSSION AND FUTURE WORK

In short, we have developed an efficiently solvable stochastic
control approach to design hierarchical flash set strategies
that exploit the statistical structure of language. Dynamically
varying the illuminated flash set, in accordance with a statistical
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model of language, was cast within the framework of a sto-
chastic shortest path problem. In order to efficiently solve the
problem, we proved that any optimal scheme displays queries
more likely symbols first. This reduced the complexity of the
problem from exponential to linear in alphabet size.

In order to compensate for its higher frequency of illumi-
nating the intended letter which weakened P300 responses, we
set the number of trials per run for DP to be larger than that of
RC and SC [2], [7]. Nonetheless, the empirical time to complete
sentences was the smallest for DP uniformly across all subjects.
The superior performance of DP is due to its ability to reduce
the averaged flash set sizes in the long run—not by taking ad-
vantage of artificially manipulating . To elucidate a perfor-
mance metric that is independent of trials per run , we per-
formed a bootstrap analysis on experimental data with human
subjects that characterized the average time to spell a sentence
as a function of the actual completion time per character. Ac-
cording to this metric, the DP speller again out-performed the
other fixed-flash set paradigms by over 50% with a 85% classi-
fication accuracy.

The method presented is independent of the classification
technique, the alphabet for the language, and the statistical
model of the language. We also expect considerable increase in
performance by using more sophisticated statistical models of
language—for example, use Google word-completion.

Other future directions consist of including explicitly the
probability of error in the variable-length flash set optimization.
In principle, we could apply our technique in conjunction with
previously discussed variable-trials-per-run paradigms [9], [11]
to elicit further performance improvement.

VII. CONCLUSION

This paper has exploited the statistical structure of language
to design a multiple-flash-set perusal strategy to convey a char-
acter in a language using a P300 communication prosthesis.
Boostrap analysis demonstrated that for 85% classification ac-
curacy, average completion time is reduced by at least 50%
using this dynamic approach as compared to traditional fixed-
flash-set paradigms. It is clear that the design of BCIs can ben-
efit greatly from employing fundamental principles of stochastic
control and statistical language models systematically.
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