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Estimating System State During Human Walking
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Abstract—This paper presents a state estimator that reliably de-
tects gait events during human walking with a portable powered
ankle-foot orthosis (AFO), based only on measurements of the an-
kle angle and of contact forces at the toe and heel. Effective control
of the AFO critically depends on detecting these gait events. A
common approach detects gait events simply by checking if each
measurement exceeds a given threshold. Our approach uses cross
correlation between a window of past measurements and a learned
model to estimate the configuration of the human walker, and de-
tects gait events based on this estimate. We tested our approach in
experiments with five healthy subjects and with one subject that
had neuromuscular impairment. Using motion capture data for
reference, we compared our approach to one based on threshold-
ing and to another common one based on k-nearest neighbors. The
results showed that our approach reduced the RMS error by up
to 40% for the impaired subject and up to 49% for the healthy
subjects. Moreover, our approach was robust to perturbations due
to changes in walking speed and to control actuation.

Index Terms—Ankle-foot orthosis (AFO), cross correlation
(CC), event detection, gait, state estimation.

I. INTRODUCTION

GAIT is a cyclic task characterized by repetitive events, and
is defined from the initial ground contact of the foot to

the subsequent contact of the same foot. Gait events are used to
divide the cycle into phases and subphases each with a functional
objective that contributes to one of three main functional tasks
during gait: weight acceptance (stance), support and propulsion
(stance), and limb advancement (swing) [1]–[3]. Gait can be
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impaired by conditions including trauma, incomplete spinal cord
injuries, stroke, multiple sclerosis, muscular dystrophies, polio,
or cerebral palsy [1]. These deficiencies create impairments
because they prevent or hinder the functional tasks required for
gait.

Ankle-foot orthoses (AFOs) are orthotic devices used to cor-
rect gait deficiencies created by impairments to the lower limbs.
In the U.S. alone, sizable populations exist with symptoms that
can be treated with an AFO: stroke (4.7M), polio (1M), multiple
sclerosis (400K), spinal cord injuries (200K) and cerebral palsy
(100K) [4]. Clinically prescribed AFO systems assist impaired
individuals by providing support for the lower leg and foot while
restricting unwanted motion of the foot in a predetermined and
fixed manner [5]–[8]. Unfortunately, these fixed motion control
properties can impede gait and cannot adapt to a changing envi-
ronment [9]. Powered AFO systems address the limitations of
passive devices by using computer control to vary the compli-
ance, damping, or net power of the device for motion control
and torque assistance at the ankle joint [9]–[12].

The performance of a powered AFO depends critically on
the ability to do two things: first, detect gait events based on
measurements from onboard sensors (e.g., accelerometers, po-
tentiometers, and force sensors), and second, control applied
torque to meet the functional objective determined by each gait
event. Our focus in this paper is on the first of these things,
reliable detection of gait events.

Many state-of-the-art AFOs detect gait events simply by
checking if each sensor measurement at a particular time ex-
ceeds a given threshold [9]–[18]. This approach has been used
to provide appropriately timed motion control and torque assis-
tance both for level walking and for stair climbing. However, this
approach becomes less reliable when the individual’s gait pat-
tern changes, for example as the result of impairment, fatigue,
preference, or functional assistance from the orthosis. More-
over, this approach may not even be possible when there exists
no unambiguous mapping from sensor measurements to a gait
event of interest, in particular an event other than “heel strike”
or “toe off.” These situations limit the number and reliability of
gait events that can be used for control.

In this paper, we consider an alternative approach that uses
the time history of sensor measurements to compute an estimate
of body configuration and then detects gait events based on this
estimate. It is well known that body configuration during cyclic
gait can be approximated by a single state variable, the “percent
gait cycle,” and that gait events are associated with particular
values of this state variable [1]. Recent work has shown that
it is possible to compute an estimate of this state variable by
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comparing motion capture data (producing measurements of
lower-limb joint angles and joint velocities) to a learned model
[19]. We will do the same, but must address the fact that a
powered AFO typically does not have access to motion capture
data, nor to similarly rich sensor measurements.

In particular, our approach computes a state estimate (i.e., an
estimate of where an individual is in the gait cycle) based only
on measurements of the ankle angle and of contact forces at the
toe and heel. These measurements are taken only from sensors
mounted on the portable powered AFO (PPAFO) that we use
in our experiments [18]. This sensor package is comparable to
what is found on other AFOs, including those of Blaya and
Herr [10] with joint angle and ground reaction force sensors,
Svensson and Holmberg [9] with a joint angle sensor, and Hol-
lander et al. [15] with a joint angle sensor and foot switches.
None of these sensor packages are sufficient to compute a state
estimate based only on one set of measurements. However, due
to the cyclic nature of gait, sensor measurements from differ-
ent gait cycles exhibit a high degree of correlation. We take
advantage of this fact to compute a state estimate based on max-
imizing the cross correlation (CC) between a window of past
sensor measurements and a reference model learned from train-
ing data. When tested in experiments with human subjects, our
approach to event detection was more accurate and more robust
to changes in gait than other approaches previously reported in
the literature.

A. Overview

Throughout this paper, we will denote time by t ∈ R, the state
variable describing percent gait cycle by λ ∈ [0, 100), and the
vector of sensor measurements by y ∈ R

3 . Since the mapping
from λ to gait events is well known [1], our goal is to compute
an estimate λ̂(t) of the state λ(t) at the current time t based on
all sensor measurements {y(s)|s ∈ [0, t]} up to this time. In our
experiments, we use the method of [19] to compute a reference
estimate λ∗(t) based on motion capture data, and define the error
in our own estimate by λerr(t) = λ̂(t) − λ∗(t).

To examine the performance of our proposed CC estimator,
we compare it to two other estimators and to a direct event (DE)
detector. All three estimators that we consider are based on a
precomputed model ȳ(λ) that tells us what sensor measurements
to expect at a given state λ. This model is given by regression
analysis of training data (λ∗,y). We also derive the average
cycle period T from this model. The estimators and DE detector
are as follows:

1) CC: The estimate λ̂CC minimizes the sum-squared er-
ror between sensor readings from the last T seconds and
training data with a phase shift of λ̂CC .

2) k-nearest neighbors (kNN): The estimate λ̂kNN minimizes
the squared error between the current sensor reading and
training data at λ̂kNN .

3) Fractional time (FT): The estimate λ̂FT is the time since
the last heel strike (determined by thresholding the heel
sensor) normalized by T .

Fig. 1. PPAFO system components. (a) Power supply: a compressed CO2
bottle with regulator provides up to 120 lbf/in2 for the system. (b) Valves: two
3-2 solenoid valves control the flow of CO2 to the actuator. (c) Actuator: a
pneumatic rotary actuator provides up to 12 N·m at 120 lbf/in2 . (d) Sensors:
two force sensors under the heel and toe and a potentiometer at the ankle joint.

4) DE: DE uses thresholds on heel and toe sensors to deter-
mine heel strike and toe off events. Because DE is limited
to these two events, it is not a state estimator.

FT is similar to what is found in the AFO literature [9]–[18],
kNN is similar to [19] but applied to AFO sensor data rather
than motion capture data, and CC is the approach that we present
here. We emphasize that CC is a classical method of signal
processing (e.g., [20]) that has been used previously for gait
analysis (e.g., [21], [22]). Our contribution is the application
of this approach to state estimation for a powered AFO and
the analysis of experiments with human subjects necessary to
demonstrate its performance.

The remainder of our paper proceeds as follows. Section II
describes the experimental methods used to quantify the perfor-
mance of each state estimator. Section III presents the details of
our CC state estimator and two others used as a basis for com-
parison. Section IV provides the results of experiments with five
healthy subjects and one subject that had neuromuscular impair-
ment. Section V considers the implications of these results in the
context of AFO control. Section VI gives concluding remarks.

II. EXPERIMENTAL METHODS

Three state estimators (CC, kNN, and FT) and DE were im-
plemented on a powered AFO capable of operation in real-world
environments outside of the laboratory or clinic. A reference es-
timate λ∗ was also derived using kinematic data from a motion
capture system and kinetic data from an instrumented treadmill.
Experimental trials with five healthy subjects and one subject
with a neuromuscular impairment were performed to assess the
three AFO estimators on their performance relative to the ref-
erence state model λ∗, ability to identify relevant gait events
during the cycle, and robustness to speed and actuation pertur-
bations. This section describes the PPAFO system, the gait lab
data collection procedure, and the experimental setup.

A. Powered Orthosis System

The PPAFO in this paper used a pneumatic power supply and
a rotary actuator at the AFO ankle joint for motion control and
propulsion assistance, (see Fig. 1) [18]. The PPAFO control loop
and estimators ran at 66 Hz, using sensor feedback sampled at
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the same rate from two force sensors (0.5 in circle, Interlink
Electronics, Camarillo, CA) mounted underneath the heel and
toe between the carbon fiber shell and the sole of the PPAFO
and a potentiometer (53 Series, Honeywell, Golden Valley, MN)
that measured the angle between the shank and foot sections.

B. Experimental Setup and Pretest Procedures

1) Experimental Setup: Subjects walked with the PPAFO
on an instrumented treadmill. For each trial, the subject wore
sleeveless top and snug-fitting shorts. Thirty two reflective mark-
ers were attached to the body, including torso, thighs, shanks,
feet, and the PPAFO. Data from the healthy subject were col-
lected at the University of Illinois, Urbana-Champaign, Urbana.
Kinematic data were collected using a six-camera motion cap-
ture system sampled at 150 Hz (Model 460; Vicon, Oxford,
U.K.). Ground reaction force (GRF) data for each foot was
collected on a split-belt treadmill with embedded force plates
sampled at 1500 Hz (Bertec, Columbus, OH). Data from the
impaired subject were collected at Georgia Institute of Technol-
ogy, Atlanta. Kinematic data were collected using a six-camera
system sampled at 120 Hz (Model 460; Vicon, Oxford, U.K.).
The kinetic data were collected on a custom force-sensing in-
strumented split-belt treadmill sampled at 1080 Hz [23]. Joint
angles were calculated from kinematic data. Joint angles and
GRF were filtered by a low-pass, fourth-order, zero-lag, Butter-
worth filter with cutoff frequency of 10 Hz. All procedures were
approved by the institutional review boards of the University of
Illinois and Georgia Institute of Technology, and all participants
gave informed consent.

2) Subject Information:
a) Healthy Subjects: The five healthy male subjects

(28 ± 4 years; height 186 ± 5 cm; mass 72 ± 8 kg) had no
gait impairments and no history of significant trauma to the
lower extremities or joints.

b) Impaired Subject: The impaired male subject (51
years; height 175 cm; mass 86 kg) has a diagnosis of cauda
equina syndrome caused by a spinal disk rupture. This gait deficit
does not allow him to generate plantarflexor torque to push his
toes down. The subject walks without the use of walking aids
(i.e., cane or walker), but usually wears AFOs bilaterally. For our
testing, he wore his own prefabricated carbon composite AFO
(Blue RockerTM, Allard, NJ) on his left leg while walking with
the PPAFO on his right leg.

3) Determining Self-Selected Speed: A self-selected walk-
ing speed for each subject was determined prior to testing. For
the healthy subjects, comfortable treadmill walking speed was
determined by averaging three self-selected speeds chosen while
wearing the PPAFO with no actuation. Average walking speed
for the five healthy subjects was 1.18± 0.11 m/s with an average
gait period of 1.16 ± 0.09 s over 30 s of walking. The impaired
subject’s comfortable walking speed was determined while in
his running shoes on the treadmill with no assistive devices on
either leg. This walking condition was used because it was the
impaired subject’s most difficult condition. Walking speed for
the impaired subject was 0.7 m/s with an average gait period of
1.09 ± 0.04 s over 30 s of walking.

C. Training Data for Estimation Models

The PPAFO state estimators require a model derived from
data collected during a preliminary training process. Each model
is unique to each subject, and is not varied between experimental
trials. During this process, a subject walked with the unactuated
PPAFO on the treadmill for 30 s at his comfortable walking
speed.

GRFZ data from the force-sensing treadmill were compared
to a threshold to identify heel strikes. The average period of the
gait cycle T was calculated from these data.

The data were also used to create regression models for each
of the PPAFO sensor measurements during gait cycles. Models
for different sensors were computed separately. Each model is
a function of cycle state λ, where λ ∈ [0, 100), and describes
the expected reading for a given sensor ȳ(λ). The regression
models were formulated in the following manner.

For each sensor, we use locally weighted regression analy-
sis [24] to establish the functional relationship between the nor-
malized input/output pairs of state λ and sensor measurement
y

(λ1 , y1), . . . , (λN , yN )

where N is the number of measurements collected from train-
ing, and λ is the percent gait cycle found by normalizing time
between heel strikes.

Regression evaluates ȳ at the point λ. This evaluation depends
on the signed distance

xi = dist(λi − λ)

between λi and the query point λ. Because λi and λ ∈ [0, 100),
the distance is defined as

dist(λi − λ) =

⎧
⎨

⎩

(λi − λ) − 100 if λi − λ > 50
λi − λ if −50 ≤ λi − λ ≤ 50
(λi − λ) + 100 if λi − λ < −50.

First, we select a fixed set of M polynomial basis functions

φ(xi) =
[
1, xi , . . . , x

M −1
i

]T

and denote

Φ =

⎡

⎢
⎣

φ(x1)T

...
φ(xN )T

⎤

⎥
⎦.

We also define

Y =

⎡

⎣

y1
...

yN

⎤

⎦

by concatenating the data associated with each output. We se-
lect the row vector v ∈ R

M of parameters that minimizes the
weighted sum-squared error e

e =
N∑

i=1

wi

(
yi − vT φ(xi)

)2
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Fig. 2. Locally weighted linear regression analysis with M = 2 polynomial
basis functions and a weighting bandwidth of r = 0.02 applied to heel force,
toe force, and ankle angle sensor measurements as a function of percent gait
cycle. Five cycles of sensor measurements (gray dots) from healthy subject #3
walking at steady state, self-selected speed were used to create a regression
model ȳ(λ), shown in black, for each sensor.

where

wi = exp
(

− x2
i

2r2

)

, for each i = 1, . . . , N

and r is a design parameter. Because wi depends explicitly
on λ, we must store and use the entire set of training data
(λ1 , y1), . . . , (λN , yN ) to make predictions. Let

W = diag (w1 , . . . , wN )

then the cost function can be rewritten in matrix form

e = (Φv − Y )T W (Φv − Y ) .

In order to minimize e, v can be solved as

v(λ) =
(
ΦT WΦ

)−1
ΦT WY.

Now we can obtain the regression model for a given sensor over
one gait cycle as

ȳ(λ) = v(λ)T φ(0).

For each subject, we precompute ȳ(λ) at λ = {0, 1, . . . , 99} for
all three sensors, and they will form the sensors regression model
matrix ȳ(λ). The results of applying this form of regression
analysis to multiple gait cycles of healthy subject #3 are shown
in Fig. 2.

D. Experimental Testing Procedure

Tests were conducted with two possible disturbances: actu-
ation and slow speed. The actuation disturbance modeled the
effect of providing assistive torque with the PPAFO. During
each gait cycle, a plantarflexor (toes down) disturbance torque

Fig. 3. (Top) Ankle joint angle for healthy subject #3 and (Bottom) the im-
paired subject with and without actuation at normal speed. The PPAFO was
able to generate a modest plantarflexor torque (12 N·m) compared to a healthy
walker (105 N·m for a 70 kg individual). Only 3 N·m of dorsiflexor torque was
required to support the foot during swing. Sensor readings without actuation and
with actuation are significantly different. Because the sensor regression model
was generated without actuation, these differences resulted in worse correlation
between current measurements and the model. For the impaired subject, exces-
sive dorsiflexion actuation during swing may have caused the large variability
of ankle joint position.

was applied if both the toe and heel sensors were loaded, and
a dorsiflexor (toes up) disturbance torque was applied if both
sensors were unloaded—otherwise, no disturbance torque was
applied. State estimates (from CC, kNN, or FT) could also have
been used to trigger the application of torque in these experi-
ments, but the use of a simple decision rule allowed for a less
biased comparison between estimators. Fig. 3 shows the result-
ing change in gait kinematics as a consequence of actuation. The
slow speed disturbance modeled the effect of variable walking
speed, which is a common gait perturbation. It was created by
slowing the treadmill.

Five experimental trials were used to evaluate the perfor-
mance of the PPAFO estimators under these two disturbances.
For each test, the subjects were given time to reach a steady
walking speed on the treadmill before data collection began.
Thirty seconds of data were recorded during steady-state walk-
ing for trials 1–4.

1) Normal Speed—No Actuation (Healthy and Impaired):
This test compares the PPAFO estimators under nominal con-
ditions. Each subject walked at his self-selected speed (normal
speed) with no actuation from the PPAFO.

2) Normal Speed—Actuation (Healthy and Impaired):
Torque applied by the PPAFO can affect gait timing and sen-
sor readings, adversely impacting estimation. The PPAFO was
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supplied with pneumatic power at 110 lbf/in2 and actuated by
the simple threshold rule described earlier.

3) Slow Speed—No Actuation (Healthy and Impaired): The
treadmill was set to 75% of the subject’s self-selected speed,
with no PPAFO actuation.

4) Slow Speed—Actuation (Healthy and Impaired): This
trial examined the effects of slow walking (75% of self-selected
speed) along with actuation. The actuation was in the same
manner as trial 2 earlier.

5) Change in Speed (Healthy): Changing speed is a common
gait perturbation. A speed change was introduced to examine
the effect of this perturbation on the accuracy of the PPAFO esti-
mators. Each healthy subject began walking at his self-selected
speed. After 20 s, the treadmill was gradually slowed to 75% of
self-selected speed in approximately 5 s. The speed remained
75% of self-selected speed for the rest of the trial. Sixty seconds
of data were recorded during the trial.

E. Estimation Comparison Metrics

Two metrics were used to evaluate and compare the perfor-
mance of the PPAFO estimators for the tests in Section II-D.

1) Event Detection: Temporal errors were compared between
gait event times identified using gait lab data, event times
predicted by the three PPAFO estimators, the DE detec-
tor, and the reference state estimator λ∗. The gait events
selected for comparison were right heel strike, left toe off,
left heel strike, and right toe off.

2) State Estimation: Errors were compared between refer-
ence state estimate λ∗ and the three PPAFO state estimates
throughout the cycle.

III. STATE ESTIMATION TECHNIQUES

The experiments described in the previous section tested three
state estimators (CC, FT, and kNN) and the DE detector, all
based on PPAFO sensor measurements in comparison to a ref-
erence estimate λ∗ based on motion capture and treadmill data.
In this section, we will describe how each state estimator was
implemented.

A. Estimate Based on CC

The CC estimator slides a window of actual sensor data across
the regression model of the sensor data, and finds the point
where the mean-square-error is minimized (i.e., where the data
and model best align). Given the regression model ȳ and the
average period T , we can apply the CC approach to estimate
λ at each time t. We do this in the following way. We have
precomputed ȳ[λ] at λ = {0, 1, . . . , 99} using the aforemen-
tioned locally weighted linear regression approach. We take a
time history of sensor data y1 , . . . ,ym sampled at m particular
times t1 , . . . , tm ∈ [t − T, t]. For all j = 1, . . . ,m, we normal-
ize these times according to

λj = 100
(

tj − (t − T )
T

)

then generate an index set I = I1 , . . . , Im according to

Ij = round (λj )

so that each Ij will be an integer index between 0 and 100. We
denote the measurements by y[j] = yj . We wrap the regression
model around periodic borders by setting ȳ[i] = ȳ[i ± 100] for
all i. The state estimate λ̂CC is the integer k ∈ {0, . . . , 99} that
minimizes

m∑

j=1

(ȳ[Ij + k] − y[j])T (ȳ[Ij + k] − y[j]) .

B. Estimate Based on FT

The FT estimator assumes that the state estimate λ̂ increases
linearly with time from heel strike

λ̂FT = 100(t − ths)/T

where ths is the time of last heel strike as determined by thresh-
olding y(ths), and T is the average cycle period.

C. Estimate Based on kNN

Another common way to estimate state is to compute the
best match between current sensor measurements y and the
regression model learned from training data ȳ

λ̂kNN = arg min
λ∈[0,100)

‖y(t) − ȳ(λ)‖2 .

This approach can be improved by averaging the k best matches
(“kNN” [25]). We chose k = 3.

D. Reference Estimate λ∗

We use an estimator generated from motion capture and tread-
mill data as a reference for comparing the PPAFO estimators.
The joint angle information expands eight variables (vertical
ground reaction forces, and bilateral hip, knee, and ankle an-
gles) and their derivatives to a 16-D state space. We build a
linearly weighted regression model q̄ using data from multiple
cycles to form a closed curve in this 16-D state space. This curve
is divided into 100 sections and labeled linearly with time. λ∗

is the label of the nearest neighbor on the curve to the current
measurement vector, as in [19].

At time t, the sensors return a 16-element vector q(t). We
compare this vector to the regression model q̄. The state λ∗ at
time t is defined as

λ∗(t) = arg min
λ∈[0,100)

‖q(t) − q̄(λ)‖2 .

Fig. 4 illustrates how normalizing the data by λ∗ aligns sen-
sor measurements across different trials better than by time or
percent gait cycle.

IV. RESULTS

CC and FT outperformed kNN for all tests. For the impaired
subject, CC demonstrated the best accuracy for all tests, reduc-
ing event detection RMS error by up to 40% compared to FT. For
the healthy subjects, FT and CC performed comparably during
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Fig. 4. Ankle angles of healthy subject #3 aligned at heel strike for ten cycles.
The angle is plotted with respect to time, percent gait cycle, and reference
estimate λ∗.

normal speed walking, but CC was more accurate during slow
walking tests (see Tables I and II).

1) Normal Speed—No Actuation (Healthy and Impaired):
For the healthy subject, both CC and FT worked well for event
detection and state estimation, while kNN did not. FT had low
state estimate error around heel strike, but the error increased as
time progressed in the gait cycle [see Fig. 5(a)] while CC stayed
relatively low. For the impaired walker, the CC technique had
a smaller average error (see Figs. 5(b) and 6). The FT estimate
diverged more during swing [see Fig. 5(b)].

2) Normal Speed—Actuation (Healthy and Impaired): This
task verified that FT and CC can successfully track the system
state, even when actuated. The RMS error for state estimate
is under 4% for the healthy subjects and around 10% for the
impaired subject. For the healthy subjects, FT and CC have
similar performance, with FT having slightly higher accuracy.
CC for the impaired subject has 23% lower RMS error than FT,
a decrease in RMS state error from 12.4 to 8.0 (see Table II).

3) Slow Speed—No Actuation (Healthy and Impaired): For
the healthy subjects, this test shows the largest improvements
of CC over FT in both event detection and state estimate error.
For both healthy and impaired subjects, the CC reduced the
state estimate error by at least 29%, from 10 to 7.1 and the event
detection error by at least 30%, from 69.6 to 49.4 ms (see Tables
I and II).

4) Slow Speed—Actuation (Healthy and Impaired): The com-
bined speed and actuation perturbations make this the only test
where kNN becomes competitive with other estimators. The
healthy subjects were best estimated using CC. For the healthy
subjects, the state estimate RMS error was reduced 25% from
FT to CC. For the impaired subject, the results are striking: a
40% reduction in state estimate error from FT to CC, from 15.7
to 9.6 (see Table II).

5) Change in Speed (Healthy): This test reduced the walking
speed by 25% midway through the trial. Fig. 7 shows the errors
from the three estimators as a function of overall time for this
test. The error variance for FT illustrates unreliability at the

slower walking speed, while CC maintains accuracy. The RMS
and worst case for FT were all reduced by a factor of two by the
CC estimate.

V. DISCUSSION

We have presented a new method of state estimation for pow-
ered PPAFOs (CC) that can be used to detect gait events. We
also presented results from testing this method and three oth-
ers (FT, kNN, and DE) in experimental trials during treadmill
walking with both healthy and impaired subjects. In this sec-
tion, we will discuss the performance, robustness, applications
to control, and limitations of these state estimation schemes.

A. Performance During Healthy Unperturbed Gait

The CC and FT estimators performed comparably during the
healthy subject normal speed walking trials. The CC estimator
correlates a window of past sensor readings to a regression
model of normative sensor data to estimate the state. The FT
estimator is an extension of the DE estimator using thresholds,
and only requires a model of subject’s gait period. The FT has the
advantage of simple implementation, but as we will discuss in
the following, the CC estimator was more robust to disturbances.

The kNN estimator performed poorly during all subject tri-
als. This estimator is based on [19], but uses PPAFO sensor
data rather than motion capture data as in [19]. The poor per-
formance of kNN was due to the limited data used to construct
subject’s state configuration, and that kNN only makes use of
the current sensor measurements. This shortcoming is com-
pounded because the PPAFO sensor data contain large sections
with nearly identical readings (see Fig. 2, e.g., 70–100% gait cy-
cle). As a result, kNN cannot reliably compute gait state during
these periods.

B. Robustness To Speed and Actuation Disturbances

The robustness of the estimators was evaluated during tri-
als with speed and actuation disturbances. A decrease in speed
was used to perturb gait because preliminary experimentation
demonstrated greater estimation errors after a decrease rather
than an increase in speed. Future work could examine the robust-
ness of the CC estimator by applying time varying disturbances
such as sinusoidal speed variations, accelerations/decelerations,
and gait initiation/cessation. A simple decision rule, rather than
using the state estimators, was used to determine the timing of
the actuation disturbance to allow for an unbiased comparison.
This approach enabled the performance of the individual estima-
tion schemes to be evaluated in the presence of the same distur-
bances. Our use of the term “actuation disturbance” may seem
unusual, since the nominal purpose of the PPAFO is to provide
assistance with applied torque. However, by choosing to view
applied torque as a disturbance, we are hoping to ensure that
estimators perform well regardless of the control policy used.

On average, the speed disturbance increased the estimation
error by a factor of 2.4 for healthy subjects and 1.9 for the
impaired subject, and the actuation disturbance increased the
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TABLE I
EVENT DETECTION ERROR RESULTS FOR EACH TECHNIQUE DUE TO SPEED AND ACTUATION PERTURBATION EFFECTS FOR HEALTHY AND IMPAIRED SUBJECTS

TABLE II
STATE ESTIMATION ERROR RESULTS FOR EACH TECHNIQUE DUE TO SPEED AND ACTUATION PERTURBATION EFFECTS FOR HEALTHY AND IMPAIRED SUBJECTS

error by a factor of 2.6 for healthy subjects and 1.6 for the
impaired subject.

The CC estimator was more robust to the speed perturbation
and performed better during the impaired walking trials (both
with and without actuation) as compared to the FT and kNN
estimator (see Tables I and II). The performance of FT and
CC estimators were comparable during healthy walking trials
perturbed by actuation. The kNN estimator was not robust to
either of the disturbances.

The CC estimator performed well during all of the perturbed
walking trials. The results from the impaired subject are par-
ticularly noteworthy because these results are representative of
the intended population for this assistive device. During both
perturbed and unperturbed gait of the impaired subject, the CC
estimator outperformed the FT estimator by a minimum state

estimation RMS error of 29% and a minimum event detection
error of 23% (see Tables I and II). The benefits of the CC es-
timator are also highlighted by the healthy walking trials with
the speed perturbation, where the state estimate RMS error and
event detection RMS error were up to 49% and 29% smaller than
the errors resulting from the FT estimation. During the healthy
walking trials with the actuation perturbation, the performance
of the CC estimator was comparable to the FT estimator. Actu-
ation perturbation introduced differences to the sensor readings
with little change to the cycle period (T for 0 lbf/in2 normal:
1.16 ± 0.09 s versus 110 lbf/in2 normal: 1.18 ± 0.04 s). As
a result, the FT estimator maintained accuracy, while the CC
estimator was adversely affected by the weaker correlation be-
tween sensor measurements and the sensor regression models
(see Figs. 3 and 5).
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Fig. 5. Continuous state estimate error (mean and ±1 standard deviation) of
FT and CC estimators and the overlap of the two behaviors for healthy subject
#3 and the impaired subject, with and without actuation.

Fig. 6. Histograms of errors from FT and CC estimators for healthy subject
#3 and the impaired subject, with and without actuation. The CC estimator
demonstrates higher precision and often lower error, i.e., tighter distributions.

While the FT estimate performed well with the healthy walk-
ers during normal speed walking and with actuation perturba-
tion, this estimator was not robust to the speed perturbation.
Fig. 7 clearly shows the degradation in performance of the esti-
mator following the decrease in speed. The speed perturbation
changed the cycle period, leading to a reduction in FT estima-
tor performance because FT was dependent on a predetermined
cycle period. The FT estimator did not outperform the CC esti-
mator during any impaired walking trials.

Table I shows that DE detection RMS error was up to six times
larger for the impaired subject than the healthy subjects during
the normal walking trials. The increased event detection error
is a significant component in the degradation of FT estimator
performance for all impaired walking trials. Certain impaired

Fig. 7. Estimation error of healthy subject #3 during the change in speed test.
The walking speed changed from 1.16 to 0.86m/s. (Top) Estimate error as a
function of time. (Bottom) Overall estimate error as a function of state during
the slow speed section. Note the high variance in the FT error at the slower speed
caused by the cycle period T increasing from 1.16 ± 0.09 to 1.32 ± 0.09s.

walking patterns make event detection difficult, causing the DE
estimator and any estimator relying on DE to perform poorly. In
contrast, CC bases its estimate on the raw sensor measurements,
not an assumed model of gait and, thus, is more robust to gait
impairments.

C. Applications to Control

As we have emphasized throughout this paper, many pow-
ered AFOs rely on gait events to determine control objec-
tives [9]–[18], and so reliable event detection is required for
system control. Notable exceptions are powered orthotic sys-
tems that use surface electromyography (EMG) to directly con-
trol actuation [26]. That approach eliminates the necessity of
gait event detection, but is limited by surface EMG signal reli-
ability and availability.

In the current study, we have demonstrated that the CC esti-
mator is able to accurately and robustly determine events during
the gait cycle using data from PPAFO sensors. However, the
CC estimator has broader applicability than just the PPAFO. In
particular, a similar approach could be applied to provide state
estimates for the control of any other assistive device (e.g., an-
other orthosis or prosthesis) that has quasi-periodic inputs and
outputs.

As we discussed in Section I, the control problem for an AFO
has two parts, gait event detection and the controlled application
of torque to meet the functional objective determined by each
gait event. Our experiments showed the results (see Tables I
and II) of using state estimators to detect gait events but did
not use these detected events as the basis for controlling torque.
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Future work will evaluate PPAFO performance during walking
trials when state estimates (in particular, those provided by CC
or FT) are used to control the actuation timing.

D. Current Limitations

The key limitation of our current approach to state estimation
is that it requires a preliminary training process. This process
was necessary to construct models used for state estimation.
Inaccuracies in the CC estimate were created by mismatched
training and actual testing conditions. One approach to reduce
these inaccuracies would be to parameterize the models with
respect to other gait variables such as gait period T . In this
scenario, gait period would be measured directly from one of
the sensors (e.g., heel sensor) and used to select the appropriate
model from a library of predetermined models in real time. The
training process was also time consuming and could serve as
an impediment for use in a clinical setting. This issue could
be addressed by continuously updating the regression model
during gait. Such an approach could allow the system to adapt to
changing environments, reduce the amount of training required
to build the models, and improve session to session robustness
since the models would be constructed as the subject walked.

The key limitation of our experimental study was that we
only examined estimator performance during steady state, level
walking on a treadmill in the gait lab. In order to successfully im-
plement the estimation techniques outside of the lab, modes such
as overground walking, ramp walking, and stair ascent/descent
must also be addressed. One approach would be to generate
individual models for each mode and apply a methodology to
switch between them. We will address these issues in future
work.

VI. CONCLUSION

Accurate state estimates allow a powered AFO to adapt to
changing environmental and functional needs. In contrast to
previous methods of state estimation that rely largely on thresh-
olding sensor measurements, this paper presented a method of
state estimation based on CC between a window of past sen-
sor measurements and a learned model. This approach—along
with three others for comparison—was implemented on a pow-
ered AFO. Experiments with healthy and impaired subjects sug-
gested that our CC state estimator provided the best overall
performance.
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