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Abstract— A common algorithm for deployment of a mobile
sensor network in a bounded domain moves each sensor toward
the centroid of its Voronoi cell. This algorithm is optimal for
a particular cost function that is expressed as a sum over
Voronoi cells, where the placement of a sensor in its own cell
has no effect on cost in other cells. We provide a probabilistic
interpretation of this “partitioned” cost function in the context
of a target detection task, where each sensor has a chance of
seeing the target that decreases monotonically with distance and
where the goal is to minimize the total probability of missed
detection. We show that the partitioned cost function is exactly
the probability of missed detection given that a sensor can only
see a target in its own Voronoi cell. We derive the probability
of missed detection in the general case—where each sensor
might see the target anywhere—and show that optimal sensor
placement changes. Finally, we derive the probability of missed
detection given the possibility of sensor failure, producing a
robust measure of cost with respect to which optimal sensor
placement is different yet again. Our results are illustrated by
several examples in simulation.

I. INTRODUCTION

In this paper, we consider the deployment of a mobile
sensor network with the goal of target detection. The target
location is drawn from a given probability distribution on a
bounded domain. Each sensor can take a single measurement
and has a chance of detecting the target that decreases
monotonically with the distance away—olfactory receptors
and audio microphones, for example, are consistent with
this model. We would like to derive a deployment algo-
rithm resulting in sensor locations that minimize the total
probability of missed detection, i.e., the probability that no
sensor detects the target. We are particularly interested in
deployment algorithms that are decentralized, for example
where the motion of any given sensor depends only on the
location of its nearest neighbors.

Our problem can be viewed as an instance of distributed
coverage, for which a natural solution approach might be the
deployment algorithm of Cortes et al [1]. With this algorithm,
each sensor moves toward the centroid of its Voronoi cell.
This algorithm is decentralized in that the descent direction
for each sensor depends only on its own location and on
the location of its Voronoi neighbors. This algorithm also
produces sensor locations that are locally optimal for a
particular choice of cost function. This cost function can be
expressed—and computed in a distributed way—as a sum
over Voronoi cells, where the placement of a sensor in its
own cell has no effect on cost in other cells. The resulting
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sensor locations form a centroidal Voronoi tessellation of the
domain, a nice property from the standpoint of analysis [2].

However, it is not clear how the “partitioned” cost function
of Cortes et al [1] corresponds, if at all, to the probability
of missed detection. Without understanding this relationship,
we cannot say exactly why the algorithm of Cortes et al
[1] should be considered a “good” or “bad” approach to
deployment of a mobile sensor network for target detection
or any other task. Furthermore, when asking questions about
the performance of this algorithm under perturbation or with
the possibility of sensor failure (when a sensor with certainty
does not see the target), we are tempted to draw conclusions
that are obviously incorrect. For example, to measure the
effect of failure at a given sensor i, one might simply ignore
cost accumulated over the Voronoi cell Wi. Doing so is
nonsense, since it means that sensor failure decreases rather
than increases total cost. What should be done instead?

We will show that the partitioned cost function of Cortes
et al [1] is—for the right choice of parameters—exactly the
probability of missed detection, given that a sensor can only
see a target in its own Voronoi cell. We will proceed to
derive the probability of missed detection in the general
case, where each sensor might see the target anywhere,
regardless of its location. We will show that the partitioned
cost function is, in fact, an upper bound to the probability
of missed detection in this general case. In other words, the
decentralized deployment algorithm of Cortes et al [1] is
based on a sensible approximation to the cost associated
with our problem, but as a consequence results in sensor
locations that are sub-optimal in the general case. Finally,
we will return to the question of robustness and derive the
probability of missed detection given the possibility of sensor
failure. When we say that a sensor “fails” we mean that it will
not detect the target, regardless of the target’s location. In our
analysis, we will assume that each sensor fails independently
with equal probability. Again, we will show that optimal
sensor placement with respect to this robust cost function
is different from what would result from application of the
partitioned cost function.

The deployment algorithms we produce—for the “total”
cost that minimizes the probability of missed detection,
and for the “robust” cost that minimizes this probability
given the possibility of sensor failure—are not decentralized.
They are descent methods, but computing the gradient is
not something that we do in a distributed way. However,
by understanding the way in which the partitioned cost of
Cortes et al [1] is a relaxation of the total cost, we hope
to have provided the foundation for the design of other
decentralized algorithms in the future, particularly those
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resulting in deployment that is robust to sensor failure.
The rest of our paper proceeds as follows. In Section II, we

provide a brief overview of related work. In Section III, we
define formally the problem of target detection for a mobile
sensor network. In Section IV, we derive the probability of
missed detection and show how it relates to the partitioned
cost of Cortes et al [1]. In Section V, we derive an expression
for the cost of sensor failure, and extend this result in
Section VI to derive the probability of missed detection with
the possibility of sensor failure. In Section VII, we compute
gradients of each measure of cost (total, partitioned, robust),
which can be used as the basis for a simple deployment
algorithm, gradient descent. Finally, in Section VIII, we show
example results in simulation and discuss their implications.
We conclude with opportunities for future work (Section IX).

II. RELATED WORK

The problem that we consider here is an instance of
the general search problem [3], [4]. Most research in this
area considers active search, in which sensors patrol the
workspace in search of a target [5]–[9]. We restrict ourselves
in this paper to a static deployment of sensors. This restric-
tion allows us to compute cost gradients analytically, which
is often not possible with standard formulations of active
search. Our problem may also be considered an instance of
robot coverage [10], but again most research considers the
case in which robots incrementally cover the environment as
they move through it (sometimes called “sweep coverage”),
whereas we focus on static deployment.

Coverage in sensor networks is a problem that has recently
received considerable interest (e.g., [11]). These problems
are often concerned with connectivity within the network
[12]–[14] or with using sensor data to estimate properties
of the environment [15]. Often, these approaches search for
purely decentralized solutions, which would be suboptimal
for the cost function that we present in the present paper.
Nonetheless, we note that [16] considers a cost function
that is directly related to our own, and that [17] considers a
variant of our “robust” cost that is generated not by sensor
fail but by communication dropouts.

III. PROBLEM DESCRIPTION

We consider the case of n sensors deployed in a workspace
W ⊆ R2, with the purpose of detecting a target whose
position is unknown. We denote by pi the position of
the ith sensor, and define a sensor configuration as P =
{p1, . . . , pn}. The configuration space for the sensor network
is thus C = R2n. The target location is a random vector
X ∈ W , with prior probability distribution φ, which we
choose as the uniform density when no prior knowledge of
target position is available. We define the cost for a given
sensor configuration as

L(P) = P{missed detection | P} (1)

in which the probability of missed detection (to be derived
in Section IV) is a function of both the sensor deployment
P and the prior distribution for the target position, φ.

We assume that the vehicles obey simple first-order dy-
namics, such that ui = ṗi, where ui is the control input for
the ith vehicle. The optimal distributed control law satisfies

P∗ = arg min
P∈C

L(P) (2)

ui(P∗) = 0, for all i (3)

If the control law is truly decentralized, each ui will be a
function of only some subset of P (i.e., ui will not depend
on full configuration information for the entire network).

Now, suppose that one or more sensors fail to function
(we will assume that they are unable to detect the target).
Let F denote the set of sensors that fail. We will denote by
LF (P) the probability that the network will fail to detect the
target in the case when the sensors in F fail to operate. We
can now define optimality as a min-max problem, in which
the goal is to minimize the worst case performance of the
network under prescribed failure conditions. For example, if
we wish the network to be robust to failures by individual
sensors, we would choose P∗ as

P∗ = arg min
P∈C

max
|F|=1

LF (P) (4)

Note that under this formulation, we have assumed that the
autonomous vehicles are able to successfully execute their
control algorithms, even though their ability to detect the
target has been compromised.

IV. PROBABILITY OF MISSED DETECTION

We denote by Di the event that the ith sensor detects the
target, and by Di the event that the ith sensor fails to detect
the target. In general, the probability that the ith sensor fails
to detect the target increases with the distance between sensor
and target. Let the conditional probability that the ith sensor
fails to detect the target when the target is located at q be

fi(‖q − pi‖) = P{Di | X = q} (5)

Assuming that the sensors are independent, the events Di

are conditionally independent given the position of the target
(i.e., if the target position is known, detection by sensor i tells
us nothing new about the probability of detection by other
sensors1). The joint conditional probability that no sensor
will detect the target located at position q is given by

P{D | X = q} =

n∏
i=1

P{Di | X = q} =

n∏
i=1

fi(‖q − pi‖).

We apply the law of total probability to find the probability
that a target will not be detected by any of the n sensors

P{D} =

∫
W
P{D | X = q}φ(q)dq

=

∫
W

(
n∏

i=1

fi(‖q − pi‖)

)
φ(q)dq (6)

1If target position is unknown, the Di are not independent events, since
detection by sensor i gives information about target position, which can be
used to infer something about the probability of detection by other sensors.
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Note that P{D} depends on the sensor placement P , and
therefore should technically be written as P{D | P}.
We have suppressed the dependence on P here merely to
simplify notation. The algorithms in Section VII explicitly
consider this dependence, and solve the problem of choosing
P to minimize the probability of missed detection.

A. Partitioned Cost Functions

We consider now the special case in which the cost
function (here, the probability of missed detection) can be
“partitioned.” In particular, we consider the case in which
the cost can be expressed in terms of n independent cost
functions, fi, such that fi depends only on pi, and fi is
constant except for the so-called “dominant region” of the
ith sensor.

Define a partition of W by {Wj}, j = 1 . . . n, such that
∪Wj = W and Wi ∩Wj = ∅ for i 6= j. When the indices
are chosen so that pi ∈Wi, we say that Wi is the dominant
region for the ith sensor. We can write Equation 6 as a sum
of the failure probabilities of the regions in the partition

P{D} =
∑
j

∫
Wj

(
n∏

i=1

P{Di | X = q}

)
φ(q)dq (7)

Equation 7 is again a cost function associated to the particular
deployment of sensors P = {p1, . . . , pn}.

Consider now the special case for which a sensor can only
detect the target if the target lies within its dominant region.
In this case, we have

P{Di | X = q} =

{
fi(‖q − pi‖) q ∈Wi

1 q /∈Wi
(8)

and Equation 7 reduces to

Pcvt{D} =
∑
j

∫
Wj

fj(‖q − pj‖)φ(q)dq. (9)

This result is of interest, because it corresponds exactly to
the cost function given in [1]. Note that Pcvt provides an
upper bound on the probability that the network will fail to
detect the target. We use the subscript cvt because in this
case, the choice of P that minimizes cost corresponds to a
centroidal Voronoi tesselation of W [2].

V. COST OF SENSOR FAILURE

We now consider the case in which one or more sensors
fail. If the ith sensor fails, its probability of missed detection
will be one, without regard to the location of the target:

P{Di | X = q} =

{
1 ith sensor fails

fi(‖q − pi‖) else
(10)

Let F denote the set of sensors that fail to function prop-
erly (thus, only the sensors in the set F function properly).
We denote by ∆PF the increase in the probability of missed
detection when those sensors in the set F fail to function

properly. We can determine ∆PF as follows:

∆PF = P{D | sensors in F fail} − P{D}

=
∑
j

∫
Wj

∏
i∈F

fi(‖q − pi‖)

φ(q)dq

−
∑
j

∫
Wj

(
n∏

i=1

fi(‖q − pi‖)

)
φ(q)dq

=
∑
j

∫
Wj

∏
i∈F

fi(‖q − pi‖)

−
n∏

i=1

fi(‖q − pi‖)

)
φ(q)dq

=
∑
j

∫
Wj

MF (q) (1−MF )φ(q)dq (11)

in which

MF (q) =

(∏
i∈F

fi(‖q − pi‖)

)

MF (q) =

(∏
i/∈F

fi(‖q − pi‖)

)
.

Equation 11 provides a quantitative assessment of the effects
of sensor failure on the probability of missed detection.

A. Application to Partitioned Cost Functions
Consider again the special case when sensors can only

detect targets within their dominant region (as given by
Equation 8). For dominant region j, there are two cases:
either sensor j functions properly, and thus j ∈ F , or sensor
j fails, and thus j ∈ F . For a functioning sensor i.e., when
j ∈ F , when q ∈Wj we have∏

i∈F

fi(‖q − pi‖)−
n∏

i=1

fi(‖q − pi‖)

= fj(‖q − pj‖)− fj(‖q − pj‖) = 0

For a non-functioning sensor (i.e., when j ∈ F), when q ∈
Wj we have∏

i∈F

fi(‖q − pi‖)−
n∏

i=1

fi(‖q − pi‖) = 1− fj(‖q − pj‖)

Thus, for this model,

∆PF =
∑
j∈F

∫
Wj

(1− fj(‖q − pj‖))φ(q)dq

For the special case of failure by a single sensor, say sensor
n, we have

∆P{n} =

∫
Wn

(1− fn(‖q − pn‖))φ(q)dq

In this case, the cost of sensor failure clearly increases as the
size of the sensor’s dominant region increases, the probability
mass within the sensor’s dominant region increases, or the
effectiveness of the sensor increases.
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VI. ROBUSTNESS TO SENSOR FAILURE
In this section, we derive the probability of missed detec-

tion in the case when sensors might fail. We assume that the
sensors fail independently, each with probability pfail. We first
derive the general probability for missed detection, and then
examine the specific case when exactly one sensor fails. The
latter is useful if we wish to design a network configuration
that is robust to individual sensor failures. We could, if
desired, extend this analysis to the case of robustness to two
sensor failures, three, etc., analogously to the derivation of
error correcting codes (e.g., Hamming codes) that are robust
to k-bit errors.

As a shorthand, denote the conditional probability of
missed detection given failure by sensors in the set F as
P{D | F}, and the probability that exactly the sensors in F
fail as P{F}. We can again use the law of total probality
to determine the probability of missed detection for a sensor
configuration P:

P{D} =
∑

F⊆{1...n}

P{D | F}P{F}

=
∑

F⊆{1...n}

P{D | F}p|F|fail (1− pfail)
n−|F|

=
∑

F⊆{1...n}

∫
W

∏
i∈F

fi(‖q − pi‖)

φ(q)dq

× p|F|fail (1− pfail)
n−|F| (12)

In particular, for the probability of missed detection when
exactly one sensor fails (i.e., of the joint event comprised of
missed detection and single sensor failure) we have

P1 =

n∑
j=1

P{D | {j}}P{j}

=

n∑
j=1

∫
W

∏
i6=j

fi(‖q − pi‖)

φ(q)dq


× pfail(1− pfail)

n−1

where pfail(1 − pfail)
n−1 is the probability that exactly one

sensor fails (and therefore n− 1 sensors do not fail).

VII. DEPLOYMENT ALGORITHMS
We have now derived three different cost functions gov-

erning variants of our target detection problem. We have the
“total cost,” P{D} given in Equation 6, which measures the
probability of missed detection. We have the “partitioned
cost,” Pcvt given in Equation 9, which measures the probabil-
ity of missed detection given that sensors see only their own
Voronoi partition. And, we have the “robust cost,” P{D}
given in Equation 12, which measures the probability of
missed detection when sensors fail independently with prob-
ability pfail. In this section, we will compute the gradient of
each cost with respect to the location pj of each sensor. The
result is a simple deployment algorithm—gradient descent—
that leads to a locally optimal placement of sensors in each
case.

A. Gradient of Total Cost

Let g (p1, . . . , pn) denote the probability of missed detec-
tion given in Equation 6. In this case

g (p1, . . . , pn) =

∫
W

(
n∏

i=1

fi (‖q − pi‖)

)
φ(q)dq (13)

and the gradient of g with respect to pj is

∇pjg (p1, . . . , pn)

= ∇pj

∫
W

(
n∏

i=1

fi (‖q − pi‖)

)
φ(q)dq

=

∫
W
∇pj

(
n∏

i=1

fi (‖q − pi‖)

)
φ(q)dq

=

∫
W
∇pj

fj (‖q − pj‖)

 n∏
i=1
i6=j

fi (‖q − pi‖)

φ(q)dq.

(14)

B. Gradient of Partitioned Cost

Now let g denote the partitioned cost function given in
Equation 9. The gradient of

g (p1, . . . , pn) =

n∑
i=1

∫
Wi

fi (‖q − pi‖)φ(q)dq (15)

with respect to pj , holding Wi constant for all i, is

∇pjg (p1, . . . , pn)

= ∇pj

n∑
i=1

∫
Wi

fi (‖q − pi‖)φ(q)dq

=

∫
Wj

∇pj
fj (‖q − pj‖)φ(q)dq (16)

Remarkably, (16) still holds if each Wi is a Voronoi cell,
hence depends on the location of pi and its Voronoi neighbors
[1], [2]. In other words, we need not consider the effect of pj
on the partition W1, . . . ,Wn when computing the gradient.
We note that there are only two differences between (14) and
(16). In particular, (16) lacks the product term

n∏
i=1
i 6=j

fi (‖q − pi‖)

and integrates only over Wj and not over all ofW . Also note
that—in contrast to (14)—the gradient (16) depends only on
the location of pj and its Voronoi neighbors, hence can be
computed in a distributed way.

C. Gradient of Robust Cost

Now denote by g the robust cost given in Equation 12.
The gradient of

g (p1, . . . , pn) =
∑

F⊆{1...n}

∫
W

∏
i∈F

fi(‖q − pi‖)

φ(q)dq

× p|F|fail (1− pfail)
n−|F| (17)
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w = 0.1 w = 0.3 w = 0.5 w = 0.7 w = 0.9

n
=

2
n

=
3

n
=

4
n

=
5

Fig. 1. Deployment of sensors for target detection in a rectangular workspace as the number n of sensors and the width w of the workspace are varied.
The target is drawn from a uniform distribution over the workspace, i.e., φ(q) = 1/w for all q. The deployment algorithm is gradient descent. The resulting
deployment is locally optimal with respect to the total cost (red circles) given by Eq. (6), the partitioned cost (black dots) given by Eq. (9), and the robust
total cost (blue crosses) given by Eq. (12). Recall that these costs correspond to the probability of missed detection, the probability of missed detection
given that sensors see only their own Voronoi partition, and the probability of missed detection when sensors fail independently with probability pfail. It
is clear from this example that what is locally optimal for each model of cost can be quite different.
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with respect to pj is

∇pjg (p1, . . . , pn) =
∑

F⊆{1...n}\{j}

∫
W
∇pjfj (‖q − pj‖)

×

∏
i∈F
i 6=j

fi(‖q − pi‖)

φ(q)dq

× p|F|fail (1− pfail)
n−|F|. (18)

The summation in (18) has a combinatorial number of terms,
so it is not practical to compute this gradient for large n.

VIII. EXAMPLES

In this section, we show results in simulation for deploy-
ment based on gradient descent (Fig. 1). In our examples, the
workspace is simply W = [0, 1]× [0, w] ⊂ R2. The target is
drawn from a uniform distribution over W , so φ(q) = 1/w
for all q ∈ [0, 1]× [0, w]. We assume

fi (‖q − pi‖) = η ‖q − pi‖2 ,

for i ∈ {1, . . . , n}, where η is chosen so that fi (‖q − pi‖) ≤
1 for all q, pi ∈ W . As a consequence, we have

∇pifi (‖q − pi‖) = 2η (q − pi)T

for i ∈ {1, . . . , n}. We chose pfail = 0.01. For vari-
ous choices of n and w, we sampled initial locations for
p1, . . . , pn uniformly at random, applied gradient descent
with respect to each measure of cost (total, partitioned, or
robust), and show results in Fig. 1. Note that there is nothing
special about our choice of sensor model—other models
(e.g., exponential detection) produce similar results.

These results make clear that optimal sensor locations
are different for each measure of cost. For example, the
decentralized deployment algorithm that results from min-
imizing the partitioned cost does not in general produce
sensor locations that minimize the total cost. Similarly, the
possibility of sensor failure strongly influences what is opti-
mal. In particular, even a small possibility of failure causes
the optimal placement of sensors for w = 0.9 to be much
different from what results from consideration of the total
and partitioned cost. In the examples shown here, for which
φ is the uniform distribution, the sensors tend to move to the
middle of the workspace for the robust detection solution.
Intuitively, this corresponds to a more conservative sensor
configuration, in which the sensors move independently to
positions from which they can more effectively observe a
larger portion of the environment.

IX. CONCLUSION

In this paper, we have presented a general approach to
optimal sensor deployment for the problem of distributed
target detection. We have shown that deployment algorithms
based on centroidal Voronoi partitions optimize a specialized
version of our cost function. Further, we have developed
expressions for the probability of missed detection, condi-
tioned on the possibility of failure by multiple sensors in

the network. Our results show that the solutions for these
three problems can be very different, thus demonstrating that
approaches that rely on centroidal Voronoi partitions are not
robust with respect to sensor failure.

Our analysis represents the first steps toward a generalized
theory of optimal robust sensor deployment. Future research
will extend our approach to problems in which non-uniform
priors for object location are used, and to problems in which
one or more agents in the network may act maliciously.
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