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In this paper, we present a model-based observer for inertial navigation of quadrotors
and other multirotor aircraft. We include in our model a Coriolis term that has been
neglected in prior work. Doing so allows us to estimate the entire velocity vector in the
quadrotor’s frame of reference—including along the z-axis of this frame—with data only
from a low-cost inertial measurement unit (IMU): something that has not been demon-
strated previously. An observability analysis predicts that our proposed observer will
perform well. Experimental results over 110 flight trials verify this prediction, showing
that our proposed observer achieves lower root mean square error than three other state-
of-the-art model-based observers.

I. Introduction

For several decades now, the well established navigation architecture for aerospace vehicles has been to in-
tegrate an inertial measurement unit (IMU) with an externally provided or on-board navigation aid. Typical
aided navigation architectures for aerospace vehicles have integrated outputs from the inertial measurement
units to produce an accurate a priori measurement that is then used in an observer that corrects errors in
the inertial navigation system with the help of the aiding sensor.1 With respect to the inertial navigation
system’s algorithms, much of the work over the past few decades has focused on reducing error produced
through integration methods.2–5 In particular, research on integration algorithms have focused primarily on
compensating for coning and sculling motion.6–9

For small aerial platforms, so-called low cost IMUs have been a popular choice to use in integrated
navigation systems due to their small size and weight.10 These IMUs have been used in conjunction with
ultrasonic sensors and magnetometers,11 lasers,12,13 GPS,14,15 and monocular vision.16 These low cost IMUs,
which are typically also microelectromechanical (MEMs) sensors, are usually characterized by a worse turn-
on and in-run bias stability than tactical grade and other higher grade IMUs. The turn-on and in-run
scale-factor stability of low cost IMUs is typically also worse than these higher grade sensors. Finally, but
not exhaustively, these IMUs have a greater sensitivity to temperature changes.

Recently, several researchers have proposed using the dynamics of multirotor helicopters to replace the
integrated outputs of a portion of the inertial navigation system with an observer.17–21 In typical integrated
INS methods, errors propagate due to alignment errors (i.e. modeling the IMU in an incorrect frame of
reference), sensor errors (i.e. various forms of bias and scale factor errors inherent to the sensors), and
computational errors in the integration algorithm.1 While these observers would actually produce worse
state estimates, due to model uncertainty, than the integration methods for navigation grade or even tactical
grade IMUs (given a correct initialization), the relatively large sensor errors in low cost IMUs allow these
observers to outperform integrated methods. In earlier work, models of a quadrotor in perfect hover were
used to estimate attitude. In particular, the accelerometers measure the specific force produced by the thrust
of the rotors and this was used to obtain improved pitch and roll measurements.17 Researchers then proposed
that accelerometers in the plane of the propellers actually measure force due to the so called H-force drag. A
simplified model of this force is proportional to the velocity of the vehicle in the plane of the rotors.22 This
work was originally used for control of quadrotors, but has since been used for state estimation of vehicle
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pitch, roll, and velocities in the plane of a quadrotor’s propellers. It has been shown how this H-force drag
model improves the quality of the IMU state estimation over both integration methods and the earlier perfect
hover assumption.18–20 Methods have also been proposed to estimate both gyroscope bias and the H-force
drag term on-line with only IMU data.18,19,21 This work has also shown that using this H-force drag model
performs better than previously developed models as the correcting rate from an aiding sensor degrades.20

Researchers have studied how wind and errors in model parameters impact the attitude estimate of an IMU
and magnetometer navigation system that also uses the H-force drag in its dynamic model.23

In this paper, we present a new observer using only measurements from a low cost IMU on-board a
quadrotor. We use the H-force drag model developed in previous work, however, we also include the Coriolis
effect in our model. Previous work has either completely omitted any mention of this effect18 or has ignored
it due an assumption that the term is “small enough to be neglected.”19 One justification for assuming the
Coriolis effect can be safely ignored is that “the vehicle cannot translate or rotate quickly without rendering
exteroceptive sensor data useless.”20 We aim to show in this paper that the Coriolis term can be used to
produce substantial improvements over current state-of-the-art observers. This term should not be ignored,
because it allows the entire velocity vector in the helicopter frame to be observable, even when the vehicle
is not translating or rotating quickly. Current state-of-the-art estimators cannot estimate the entire velocity
vector in the helicopter frame. By using the Coriolis term, our observer can do this and produce root mean
square errors in the state estimates that are lower than state-of-the-art observers.

In Section II, we present three variants of our observer and three state-of-the-art observers. The difference
between these observers is in their model of multirotor helicopters and inertial measurement units. In Section
III, we present the nonlinear observability matrix of our proposed observer to show how the entire velocity
vector is observable due to the fact that we include the Coriolis effect. We also numerically show how strong
the observability properties of our proposed observer are and compare these properties to three state-of-the-
art observers. In Section IV, we show results demonstrating the effectiveness of our proposed estimator over
110, thirty second flight trials. Section V offers conclusions and presents future work.

II. System Model and Observer Design

In the previous section, we introduced model-based observers as an alternative to integration of IMU data.
We claim that these model-based observers can improve the performance of inertial navigation systems for
low cost inertial sensors when compared to integration algorithms. In this section we use a simplified model
of the quadrotor and IMU to develop a model-based observer. Then, we introduce three alternative model-
based observers presented in existing literature to compare our proposed observer against. Finally, we present
two variants of our proposed observer to facilitate this comparison.

A. Proposed Observer

Consider the quadrotor system depicted in Figure 1. We define a world coordinate system
(
FW

)
which we

shall treat as an inertial frame of reference with an x-axis pointing North, y-axis pointing East, and z-axis
pointing in line with the gravity vector. We define the body frame

(
FB
)

attached to the quadrotor as shown.
We assume that the x-y plane of the body frame is in the plane of the rotors, the origin of this frame is at
the center of mass and is also where the IMU is located. We make these assumptions out of convenience. It
is relatively straight forward to apply this work when these assumptions are not valid.

In this paper, we use the ZYX Euler angle sequence to express the orientation of the quadrotor. The
dynamics of the roll (φ), pitch (θ), and yaw (ψ) Euler angles are expressed as

φ̇ = ωx + ωz tan θ cosφ+ ωy tan θ sinφ

θ̇ = ωy cosφ− ωz sinφ

ψ̇ = ωy
sinφ

cos θ
+ ωz

cosφ

cos θ

(1)

where ωx, ωy, ωz represent the angular velocities about the x, y, and z-axis respectively.
The acceleration of a general rigid body with respect to an inertial frame written in terms of the body

frame coordinate system is

v̇bw,b = q̈bw,b + 2ω̂bw,bv
b
w,b − ω̂bw,bω̂bw,bqbw,b + ˙̂ω

b

w,bq
b
w,b (2)
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Figure 1. Ascending Technologies Pelican quadrotor with world and body frame.24

where v̇bw,b is the acceleration of the body frame with respect to the world frame written in terms of the

body frame, qbw,b is the position vector, vbw,b is the velocity vector, ω̂bw,b represents a skew symmetric matrix

of the angular velocity vector, q̈bw,b is the second time derivative of the position vector, and ˙̂ω
b

w,b is the skew
symmetric matrix of the angular acceleration vector.

In this work, we neglect the last two terms of Equation 2, which depend on the position of the body
frame with respect to the world frame written in terms of the body frame. We do this because the position
of the quadrotor is not, using only an IMU, observable. This results in

v̇bw,b =
F b

m
+ 2ω̂bw,bv

b
w,b (3)

where F b are the forces acting on the quadrotor written in terms of the body frame and m is the mass of
the quadrotor.

We assume that gravity, thrust, and the H-force drag term developed in previous literature are the only
forces acting on the quadrotor.18–20,22 For a single propeller rotating with angular velocity ωp the H-force
drag has been modeled as

FH = ωpλV ⊥p (4)

where FH is the H-force drag exerted on the rotor, λ is a constant, and V ⊥p is the velocity along the plane
of the rotor.22 Previous work in IMU estimation has simplified this model by assuming the angular velocity
of the rotor is approximately constant.18–20 This results in

FH = µV ⊥p (5)

which is the model we use in this paper. The resulting dynamic equations of motion are

v̇bx = −g sin θ − µ

m
vbx − 2ωzv

b
y + 2ωyv

b
z

v̇by = g cos θ sinφ− µ

m
vby − 2ωxv

b
z + 2ωzv

b
x

v̇bz = g cosφ cos θ − T

m
− 2ωyv

b
x + 2ωxv

b
y

(6)

where g is standard acceleration due to gravity, µ is the H-force drag constant, T is the thrust produced by
the quadrotor’s four rotors, vbi is the velocity along the ith axis in the body frame, and v̇bi is the acceleration
along the ith axis in the body frame.

We use a simplified model of the IMU in this work. This model ignores g-dependent bias, anisoelastic,
and anisoinertial errors to name a few.1 This model is

aSFmi
= λaia

SF
i + βai + wai

ωmi
= λωi

ωi + βωi
+ wωi

(7)
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where aSFmi
is the specific force measured by the accelerometer along the ith body frame axis, ωmi is the

measured angular velocity about the ith body frame axis, λa and λω is the scale factor corrupting the true
specific force, aSF , and angular velocity respectively, βa and βω are (potentially time-varying) biases, and
wa and wω is a zero mean white Gaussian noise term effecting the accelerometers and gyroscopes.

In our observer, we estimate roll, pitch, and the three body frame velocities. Again, to the best of our
knowledge, the observer we propose is the only such observer for multirotor helicopters that can estimate the
entire body frame velocity vector with only IMU measurements. We use a standard discrete time extended
Kalman filter (EKF) for state estimation; however, other observers can be used as well. The a priori model
we use in the EKF is

˙̆
φ = ωmx + ωmz tan θ̆ cos φ̆+ ωmy tan θ̆ sin φ̆

˙̆
θ = ωmy

cos φ̆− ωmz
sin φ̆

˙̆vbx = −g sin θ̆ − µ

m
v̆bx − 2ωmz

v̆by + 2ωmy
v̆bz

˙̆vby = g cos θ̆ sin φ̆− µ

m
v̆by − 2ωmx

v̆bz + 2ωmz
v̆bx

˙̆vbz = g cos φ̆ cos θ̆ + aSFmz
.

(8)

This model uses gyroscope measurements for angular velocity, the z-axis accelerometer measurement, and
current state estimates (denoted with a breve). For use in the EKF, Equation 8 must be discretized.

We use the accelerometer output along the body frame x and y-axes as the measurement in the innovation
term of the EKF. This innovation term is

v =

[
aSFmx

aSFmy

]
−

[
− µ
m v̆

b
x − 2ωmz

v̆by + 2ωmy
v̆bz

− µ
m v̆

b
y − 2ωmx

v̆bz + 2ωmz
v̆bx

]
. (9)

As a part of the EKF algorithm, we must also take the Jacobian of the a priori model and output model
about current state estimates and choose a priori and output model covariances.

B. Previously Developed Observers

We choose to compare our observer to three other observers. Beard, Leishman, and Macdonald presented two
observers. They, along with Abeywardena, Kodagoda, Dissanyake, and Munasinghe, showed how using the
H-force drag in a quadrotor model provides an improvement over other observers for multirotor helicopters
and integration methods for low cost IMUs. To the best of our knowledge, these three observers represent
the state-of-the-art INS for multirotor helicopters with low cost IMUs. The first estimator presented by
Beard, Leishman, and Macdonald (which we shall call the BLM estimator) uses the a priori model

˙̆
φ = ωmx

+ ωmz
tan θ̆ cos φ̆+ ωmy

tan θ̆ sin φ̆

˙̆
θ = ωmy cos φ̆− ωmz sin φ̆

˙̆vbx = −g sin θ̆ − µ

m
v̆bx

˙̆vby = g cos θ̆ sin φ̆− µ

m
v̆by

(10)

and the innovation term19,20

v =

[
aSFmx

aSFmy

]
−

[
− µ
m v̆

b
x

− µ
m v̆

b
y

]
. (11)

Beard, Leishman, and Macdonald, as an alternative to the BLM estimator, also present an observer that
can estimate the H-force drag coefficient as a state parameter in the observer. These researchers show that
this drag coefficient is observable as long as the helicopter is experiencing an acceleration in the plane of
the rotors. They claim that this observer (which we shall call the BLM-µ observer) allows the user to avoid
using complicated parameter identification techniques and expensive motion capture systems.19 The BLM-µ
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observer uses the a priori model

˙̆
φ = ωmx

+ ωmz
tan θ̆ cos φ̆+ ωmy

tan θ̆ sin φ̆

˙̆
θ = ωmy cos φ̆− ωmz sin φ̆

˙̆vbx = −g sin θ̆ − µ̆

m
v̆bx

˙̆vby = g cos θ̆ sin φ̆− µ̆

m
v̆by

˙̆µ = 0

(12)

and the innovation term19

v =

[
aSFmx

aSFmy

]
−

[
− µ̆
m v̆

b
x

− µ̆
m v̆

b
y

]
. (13)

Both the BLM and BLM-µ observers assume that the gyroscopes measure the angular velocities exactly.
Abeywardena, Kodagoda, Dissanyake, and Munasinghe attempt to estimate gyroscope bias about the x
and y-axes, in addition to the states estimated by the BLM observer, to improve the performance of their
estimator. The a priori model of this observer (which we shall call the AKDM observer) is

˙̆
φ = ωmx

− β̆ωx
+ ωmz

tan θ̆ cos φ̆+
(
ωmy

− β̆ωy

)
tan θ̆ sin φ̆

˙̆
θ =

(
ωmy

− β̆ωy

)
cos φ̆− ωmz

sin φ̆

˙̆vbx = −g sin θ̆ − µ

m
v̆bx

˙̆vby = g cos θ̆ sin φ̆− µ

m
v̆by

˙̆
βωx

= − β̆ωx

τωx

˙̆
βωy

= −
β̆ωy

τωy

(14)

and the innovation term is

v =

[
aSFmx

aSFmy

]
−

[
− µ
m v̆

b
x

− µ
m v̆

b
y

]
(15)

where τωx and τωy are the time constants of the gyroscope biases.18 We shall use these three observers, the
BLM, BLM-µ, and AKDM, as references against which to compare our proposed observer.

C. Variants of Proposed Observer

In order facilitate comparison between our proposed observer and the BLM, BLM-µ, and AKDM observers,
we present two variants of our proposed observer: the proposed-µ variant and the proposed-β variant. Our
proposed-µ observer attempts to estimate the H-force drag term as an additional state parameter. The a
priori model of this estimator is

˙̆
φ = ωmx

+ ωmz
tan θ̆ cos φ̆+ ωmy

tan θ̆ sin φ̆

˙̆
θ = ωmy cos φ̆− ωmz sin φ̆

˙̆vbx = −g sin θ̆ − µ̆

m
v̆bx − 2ωmz v̆

b
y + 2ωmy v̆

b
z

˙̆vby = g cos θ̆ sin φ̆− µ̆

m
v̆by − 2ωmx

v̆bz + 2ωmz
v̆bx

˙̆vbz = g cos φ̆ cos θ̆ + aSFmz

˙̆µ = 0

(16)
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and the innovation term is

v =

[
aSFmx

aSFmy

]
−

[
− µ̆
m v̆

b
x − 2ωmz v̆

b
y + 2ωmy v̆

b
z

− µ̆
m v̆

b
y − 2ωmx v̆

b
z + 2ωmz v̆

b
x

]
. (17)

Our proposed-β observer attempts to estimate the gyroscope bias terms as an additional state parameter.
The a priori model of this estimator is

˙̆
φ = ωmx

− β̆ωx
+ ωmz

tan θ̆ cos φ̆+
(
ωmy

− β̆ωy

)
tan θ̆ sin φ̆

˙̆
θ =

(
ωmy − β̆ωy

)
cos φ̆− ωmz sin φ̆

˙̆vbx = −g sin θ̆ − µ

m
v̆bx − 2ωmz v̆

b
y + 2

(
ωmy − β̆ωy

)
v̆bz

˙̆vby = g cos θ̆ sin φ̆− µ

m
v̆by − 2

(
ωmx − β̆ωx

)
v̆bz + 2ωmz v̆

b
x

˙̆vbz = g cos φ̆ cos θ̆ + aSFmz

˙̆
βωx = 0

˙̆
βωy

= 0

(18)

and the innovation term is

v =

[
aSFmx

aSFmy

]
−

 − µ
m v̆

b
x − 2ωmz

v̆by + 2
(
ωmy

− β̆ωy

)
v̆bz

− µ
m v̆

b
y − 2

(
ωmx

− β̆ωx

)
v̆bz + 2ωmz

v̆bx

 . (19)

In the proposed-β model, we assume the bias term is constant. Abeywardena, Kodagoda, Dissanayake, and
Munasinghe do not provide a means by which they estimate their time constants, so we simply omit them in
our proposed-β observer and take the limit as the time constant goes to infinity in the AKDM observer. Note
again that our proposed observer, and its variants, estimate the entire velocity vector in the body frame of
reference. The BLM, BLM-µ, and AKDM observers estimate only two of the three elements of this velocity
vector. As we will show, this difference will cause our proposed estimator to substantially outperform our
benchmark estimators. In the next section, we shall study the observability properties of the BLM, BLM-µ,
AKDM, and the proposed observer and its variants. In Section IV we shall present metrics by which we
will compare these estimators and we shall show how our proposed estimator outperforms its benchmark
observers.

III. Observability Analysis

In the previous section, we developed a model-based observer that includes the Coriolis term in its model.
We then presented three alternative models described in previous work and two additional variants of the
observer we developed to facilitate comparison with the alternative observers. In this section we begin the
comparison with a study of the observability properties of these six models. It is obvious that using even the
simplified accelerometer and gyroscope model presented in Equation 7 implies that all the models presented
would, in fact, be technically unobservable. This is due to the fact that there exists an unknown scale
factor and time varying unknown bias term for every measurement. Previous work uses simplified models of
the IMU to show observability with the assumption that observers are robust to these small disturbances.
We begin by exploring the use of the observability rank condition with our observer as done in previous
work. We find this method rather lacking, however, because it does not indicate how easy it is to observe
a system. We use two metrics presented by Krener and Ide to measure the strength of the observability of
the proposed estimators.25 From these metrics we believe the performance of the estimators can be inferred
even in the presence of small disturbances. Alternatively, we could have used a sensitivity analysis similar
to that presented by Hernandez, Tsotsos, and Soatto for vision-aided inertial navigation systems to find a
bound on the set of indistinguishable state trajectories.26
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A. Observability Rank Condition

Previous work on observability analysis for this type of system used the observability rank condition to
establish which states are locally, weakly observable when the quadrotor is near its hover condition.19,20

This type of rank condition states that a nonlinear system described by

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

y = g(x), y ∈ Rp
(20)

and observability matrix defined by

O =


dg(x)

...

dLkf (g)(x)


where dLkf (g)(x) = dLk−1

f (g)(x)f(x, u), dL0
f (g)(x) = dg(x),

and dg(x) = ∂g
∂x (x)

(21)

is locally, weakly observable if the rank of the observability matrix is equal to the number of states (n).27

Note that for real analytic systems, this observability rank condition is a necessary and sufficient condition
for observability.

We have computed the first four rows of the observability matrix for the BLM observer as

OBLM =


0 0 − µ

m 0

0 0 0 − µ
m

0 gµ cos θ
m

µ2

m2 0

− gµ cosφ cos θ
m

gµ sinφ sin θ
m 0 µ2

m2

 . (22)

From this subset of the observability matrix, it is can be inferred that the BLM system is observable
everywhere except where φ = π

2 or θ = π
2 since the first column of the fourth row element will be zero.

However, we cannot prove that without the full observability matrix. Next we computed the first five rows
of the observability matrix for the BLM-µ observer. This matrix is

OBLM−µ =


0 0 − µ

m 0 − vxm
0 0 0 − µ

m − vym
0 gµ cos θ

m
µ2

m2 0 2µvx+gm sin θ
m2

− gµ cosφ cos θ
m

gµ sinφ sin θ
m 0 µ2

m2

2µvy−gm cos θ sinφ
m2

gµ cos θ(−ωz cosφ−ωy sinφ)
m O(5,2) − µ3

m3 0 O(5,5)

 (23)

where

O(5,2) = −gµ
2 cos θ

m2
− gµ (ωy cosφ− ωz sinφ) sin θ

m

O(5,5) = −µ
2vx
m3

+
g cos θ (ωy cosφ− ωz sinφ)

m
+

2µ
(
−µvxm − g sin θ

)
m2

.

(24)

From this matrix, it appears that there may be several unobservable modes. For example, when ωx and ωy
are zero and φ = π

2 or θ = π
2 . Another unobservable state is when φ = 0, θ = π

2 , and ωy = 0. Again, while
we can hypothesize that these may be unobservable states, we would need the full observability matrix to
prove this is true. Beard, Leishman, and Macdonald presented a similar analysis where they claimed that
the system becomes unobservable when the acceleration along the plane of the rotors become zero.19 Next
we computed the first six rows of the observability matrix for the AKDM observer. This matrix is

O
AKDM

=



0 0 − µ
m 0 0 0

0 0 0 − µ
m 0 0

0 gµ cos θ
m

µ2

m2 0 0 0

− gµ cosφ cos θ
m

gµ sinφ sin θ
m 0 µ2

m2 0 0

O(5,1) O(5,2) − µ3

m3 0 − µ2

m2 − gµ cosφ cos θ
m

O(6,1) O(6,2) 0 − µ3

m3
gµ cosφ cos θ

m 0


(25)
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where

O(5,1) = −gµ cos θ (ωz cosφ+ (−βy + ωy) sinφ)

m

O(5,2) =
gµ (−µ cos θ +m ((βy − ωy) cosφ+ ωz sinφ) sin θ)

m2

O(6,1) =
gµ cos θ (µ cosφ+m (−βx + ωx) sinφ)

m2

O(6,2) = −gµ (mωz cos θ + (m (βx − ωx) cosφ+ µ sinφ) sin θ)

m2
.

Finally, we computed the first five rows of our proposed observer’s observability matrix as

Oprop =


0 0 − µ

m
−2ωz 2ωy

0 0 2ωz − µ
m

−2ωx
O(3,1) O(3,2)

µ2

m2 − 4ω2
z

4µωz
m

− 2µωy

m
+ 4ωxωz

O(4,1) O(4,2) − 4µωz
m

µ2

m2 − 4ω2
z

2µωx
m

+ 4ωyωz

O(5,1) O(5,2) O(5,3) O(5,4) O(5,5)

 (26)

where

O(3,1) = −2gωz cosφ cos θ − 2gωy cos θ sinφ

O(3,2) =
gµ cos θ

m
− 2gωy cosφ sin θ + 2gωz sinφ sin θ

O(4,1) = −gµ cosφ cos θ

m
+ 2gωx cos θ sinφ

O(4,2) = −2gωz cos θ + 2gωx cosφ sin θ +
gµ sinφ sin θ

m

O(5,1) = −g cos θ ((2mωxωy − 3µωz) cosφ+ (−µωy + 2mωxωz) sinφ)

m

O(5,2) =
−g
(
µ2 + 2m2

(
ω2
y − ω2

z

))
cos θ

m2
+ ...

gm ((µωy − 2mωxωz) cosφ+ (2mωxωy − 3µωz) sinφ) sin θ

m2

O(5,3) =
8µω2

z − µ
(
µ2

m2 − 4ω2
z

)
m

O(5,4) = −4µ2ωz
m2

− 2ωz

(
µ2

m2
− 4ω2

z

)
O(5,5) = −8µωxωz

m
+ 2ωy

(
µ2

m2
− 4ω2

z

)
.

The proposed-µ and proposed-β observability matrices have been omitted here due to their length. We
find the analysis of these estimators with observability matrices insufficient for comparison. First, none of
the matrices presented display the full observability matrix of a system. The rank condition generally only
indicates whether or not the system is observable. The analysis we presented may allow us to infer what
some unobservable modes may be, but we cannot guarantee that this is actually the case. In particular, we
may identify some observable modes as unobservable. Finally, we have no indication with the observability
rank condition how easy it will be for an observer to accurately estimate the states of a system.

In the following chapter, we use two measures of the degree of observability presented in previous literature
and use them to compare the six observers. These measurements use the singular values of the observability
Gramian about a nominal trajectory. Recall that we claim including the Coriolis term in our proposed
model allows the entire velocity vector to become observable in the body frame. Also, we can infer (through
substitution), from Equation 26 that the proposed observer experiences an unobservable mode when ωx, ωy,
and ωz is zero. We also infer from Equation 26 that the observability of the system is not dependent on
the thrust produced by the quadrotor over some time interval. These inferences will be used to establish
nominal trajectories.
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B. Degree of Observability

We shall use the so-called local unobservability index and local estimation condition number to assess ob-
servability. Since the observability rank condition does not imply how hard it is to observe the system, we
use these metrics to allow us to make better conclusions about the observability properties of the system.
The local unobservability index is defined as the reciprocal of the smallest local singular value of the local
observability gramian defined as

P (x0) =

∫ tf

0

ΦT (t)GT (t)G(t)Φ(t)dt (27)

where

G(t) =
∂g

∂x
(x0(t))

tf is the final time, and Φ is the fundamental matrix of the system linearized about a nominal trajectory.
This local unobservability index measures how difficult it is to observe the initial state from the system’s
outputs. The local estimation condition number is defined as the ratio of the largest local singular value to
the smallest local singular value and is a measure of how much a small change in the initial condition of one
state effects the change in the output relative to small changes in the initial conditions of other states. In
other words, it becomes more challenging to design an effective observer as the local unobservability index
and the local estimation condition number grows.25

In this paper, we compute the local observability gramian numerically. First, we choose a nominal
trajectory and a small scalar ρ > 0. Then, we compute perturbed trajectories as described (using the
notation presented by Kang, Krener, Xiao, and Xu) in

ẋ±(t) = f(x±(t), u(t))

x±(0) = x0 ± ρvi
(28)

where the set of vectors v1, v2, · · · , vn form an orthonormal basis in Rn. Finally, we compute the local
observability gramian with28

Pij =

∫ tf

0

∆T
i (t)∆j(t)dt (29)

where

∆i(t) =
1

2ρ
(g(x+(t))− g(x−(t))).

Note that as ρ→ 0 the numerical approximation approaches the true local observability Gramian. Note that
when one or more of the singular values of this observability Gramian is zero, this system is unobservable.

We now compare the observability properties of the BLM, BLM-µ, and AKDM observers with the
proposed observer and its variants. In our rank condition analysis, we found that the observability of our
system is not directly dependent on the thrust produced by the system, but our proposed observer and its
variants are dependent on the angular velocities. Therefore, we produce nominal trajectories by beginning
with an initial state (all states zero except for µ which we choose as 0.8281), setting thrust equal to the
weight of the quadrotor, and then varying the angular velocity about each axis according to the function

ωi = ε sin (1.25t) where i = x, y, z. (30)

One way to interpret Equation 30 is as a deterministic model of a disturbance the quadrotor may experience in
hover. We plot the unobservability index as a function of ε for ρ = 0.0001 in Figure 2(a). First, note that for
all ε > 0, all proposed systems are observable. The observability properties of the BLM and AKDM observers
appear to be independent of ε. Additionally, all observers appear to converge to the same unobservability
index near ε = 0.1. The proposed estimator appears to have a high unobservability index until approximately
ε = 0.001 when it begins to drop rapidly relative to the BLM-µ, proposed-β, and proposed-µ observers. The
condition number for the proposed-β estimator is consistently higher than the alternative estimators. The
AKDM conditition number is consistently at least two orders of magnitude larger than the BLM observer.
The AKDM also appears to have a larger condition number than the proposed, BLM-µ, and proposed-µ
observers for ε > 0.01.
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(b) Estimation Condition Number

Figure 2. Observability Properties of Presented Observers. Lower unobservability indices and estimation
condition numbers imply that it is easier for an observer to accurately estimate the true states of the system.

As mentioned previously, the inherent advantage of our proposed observer and its variants are the poten-
tial for the entire velocity vector to be accurately estimated. As shown, this can only happen if the angular
velocities are high enough during any flight conditions the quadrotor may experience such that an observer
can be used to accurately estimate the states of the quadrotor. In Section IV, we will evaluate these observers
over 110, thirty second flight trials and discuss these results in the context of their observability properties.

IV. Flight Tests and Results

In the previous section, we compared the observability properties of the six observers. In this section,
we implement these observers in flight tests. These observability properties provide context to these results
and some degree of explanatory power. Flight tests were conducted on an Ascending Technologies Pelican
quadrotor. Accelerometer and gyroscope data was collected along with position and orientation from a set
of 24 Flex 3 Optitrack motion capture cameras with a roughly 100 Hz frame rate over 13 manual flights.
Pairs of these cameras (one approximately 2 feet below the other) were distributed around a 40 ft × 30 ft ×
9 ft room. These thirteen flights are broken into 110, 30 second trials. We estimate the H-force drag off-line
for all thirteen flights and average the results over all data points. The H-force drag was estimated to be
0.828. We first present an illustration of our results for one trial and then present the aggregated root mean
square error results for all 110 trials.

A. Illustration of Observers

Figure 3(a) shows the absolute value of the error in the estimate of velocity along the body frame z-axis
in both the integrated case and for the proposed estimator. Note that for the BLM, BLM-µ, and AKDM
observers, the body frame z-axis velocity must be computed by integrating accelerometer measurements and
compensating for gravity. The improvement the proposed estimator provides is obvious. While the error in
the proposed estimator is not zero, it is better: even for very short time scales. For this particular trial, the
RMS error of velocity along the body frame z-axis is 0.115 meters per second for the proposed estimator.
Meanwhile, the RMS error of velocity along the body frame x and y-axes are 0.316 and 0.378 meters per
second respectively for the proposed estimator.

Figure 3(b) also shows substantial improvements in the position estimate of the quadrotor over a 30
second period caused by the proposed estimator versus the BLM observer. Here the norm of the error in
the position estimate with the proposed observer is approximately 100 meters smaller over thirty seconds
than with the BLM estimator. The true positions of the quadrotor over this trial are shown in Figure 3(c).
This result is due to the substantial improvement in the body frame z-axis velocity estimate, whose error is
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almost eight meters per second smaller in the proposed estimator after thirty seconds than with the BLM
estimator. While we only show these results for one trial, these results are reflective of what we see over the
110 trials as a whole.

Figure 3(d) shows the position estimates for the BLM-µ and proposed-µ estimators together. For most
of the flight, the proposed-µ estimator’s position error norm grows at a much slower rate than the BLM-µ.
As with the proposed estimator, this is due to the fact that we can leverage the Coriolis effect to estimate
the body frame Z velocity. Toward the end of the flight, however, the proposed-µ observer has a very sudden
growth in its position error norm. The results from both the BLM-µ and proposed-µ observers are much
less consistent across the 110 trials than the BLM and proposed estimators’ results. Figure 3(e) shows the
norm of the position error for the BLM-µ and proposed-µ observers for a different trial. These results are
quite different from 3(d) since the proposed-µ position error is significantly smaller than the BLM-µ error
after thirty seconds.

Figure 3(f) compares the norm of the position error of the AKDM observer with the proposed-β estimate.
Again the norm of the error in the position estimate with the proposed-β observer is approximately 100 meters
smaller over thirty seconds than with the AKDM estimator. Like with the results from Figure 3(b) this result
is due to the substantial improvement in the body frame z-axis velocity estimate.

B. Results Over 110 Trials

We aggregate the results for 110, thirty second trials into the following tables: Table 1 shows the average root
mean square (RMS) error for each estimator over 110 cases, Table 2 presents the maximum and minimum
RMS error over the trials, and Table 3 presents the standard deviation of the trials. First, note that the
proposed and proposed-β observers have both a lower average RMS error and standard deviation for the
body frame z-axis velocity than the BLM, BLM-µ, and AKDM observers. Also, the maximum RMS error
is lower for the proposed and proposed-β observers than the minimum RMS error for the BLM, BLM-µ,
and AKDM observers. This is due to the fact that including the Coriolis term in our model has enabled us
to effectively estimate this additional state rather than using simple integration that is used in the BLM,
BLM-µ, and AKDM observers.

By almost every metric, the proposed-µ estimator is by far the worst of the six estimators presented at
observing the velocity vector. Note that this is due to the tendency of this proposed-µ observer to become
unstable with respect to error. The median RMS error of the body frame z-axis velocity is only 0.211 meters
per second however. Again, this is lower than the minimum error shown for observers that do not leverage
the Coriolis effect. It is not surprising that the proposed-µ observer had some unstable results. Figure 2
shows how this observer has consistently the worst local unobservability index of all the observers presented.

There is no clear improvement or harm produced by using the AKDM compared to the BLM or the
proposed-β compared to the proposed observers. With regard to several metrics (i.e. the velocity along
the y-axis) these bias observing estimators do worse than their alternatives. However, the average RMS
error of velocity along the x-axis is smallest for the AKDM observer. While the bias of low cost IMUs are
high relative to higher grade sensors, these values are still typically small compared to the other states and
angular velocities. This fact, along with the relatively high condition number of the AKDM and proposed-β
observers, make it difficult to accurately estimate the gyroscope bias.

Estimator RMS Roll Error RMS Pitch Error RMS vbx Error RMS vby Error RMS vbz Error

(rad) (rad) (m/s) (m/s) (m/s)

Proposed 0.120 0.083 0.351 0.384 0.169

BLM 0.143 0.090 0.352 0.542 4.474

Proposed-µ 0.119 0.109 6.125×1010 1.106×1013 1.372×108

BLM-µ 0.289 0.218 8.682 14.667 15.750

Proposed-β 0.126 0.083 0.348 0.396 0.171

AKDM 0.136 0.088 0.335 0.552 4.814

Table 1. Average RMS Error in Estimators
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Figure 3. Illustration of Estimator Results
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Estimator RMS Roll Error RMS Pitch Error RMS vbx Error RMS vby Error RMS vbz Error

(rad) (rad) (m/s) (m/s) (m/s)

Proposed 0.509 0.034 0.263 0.027 0.634 0.147 0.628 0.243 0.271 0.095

BLM 0.980 0.035 0.283 0.025 0.641 0.119 0.969 0.337 18.032 0.662

Proposed-µ 0.778 0.024 1.068 0.018 6.109×1012 0.098 1.106×1015 0.057 1.371×1010 0.110

BLM-µ 1.080 0.026 0.825 0.020 113.220 0.095 220.626 0.075 76.788 1.400

Proposed-β 0.519 0.035 0.236 0.026 0.623 0.140 0.572 0.251 0.276 0.095

AKDM 0.517 0.035 0.410 0.027 0.628 0.114 0.841 0.343 18.718 0.471

Table 2. Maximum/Minimum RMS Error in Estimators

Estimator RMS Roll Error RMS Pitch Error RMS vbx Error RMS vby Error RMS vbz Error

(rad) (rad) (m/s) (m/s) (m/s)

Proposed 0.074 0.047 0.123 0.072 0.041

BLM 0.119 0.054 0.148 0.109 2.967

Proposed-µ 0.108 0.141 6.109×1011 1.106×1014 1.371×109

BLM-µ 0.243 0.195 14.365 25.970 17.945

Proposed-β 0.073 0.046 0.124 0.074 0.042

AKDM 0.081 0.058 0.136 0.107 3.404

Table 3. Standard Deviation of RMS Error in Estimators

V. Conclusions

In this paper, we have presented an observer that leverages a model of a quadrotor and IMU data to
compute roll, pitch, and the body frame velocity vector. The observer is able to effectively estimate one more
state than previously presented observers. We have shown through analysis of the observability properties
of the proposed observer and through flight tests that this observer will perform well over reasonable flight
conditions. We have also shown, again through observability analysis and through flight tests, that it is
ineffective to estimate either the H-force or gyroscope biases as part of our estimator. For low cost IMUs, we
believe the proposed observer can substantially improve the performance of the inertial navigation capabilities
of multirotor unmanned aircraft. This is immediately applicable in environments where the time between
updated navigation data from an aiding sensor becomes longer or when the aiding sensor experiences a fault.
In the future we shall explore integrating this method for inertial navigation with aiding sensors such as a
monocular camera.
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