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Abstract— This paper considers the problem of stabilizing a
unicycle-type mobile robot using a time-invariant, discontinuous
control law. In order to simplify the control design, most
previous approaches neglect second-order system dynamics
(compensating for them later using techniques such as partial
feedback linearization). This paper shows that an approach
based on invariant manifold theory can be extended to account
for these dynamics. The performance of the resulting control
law is demonstrated in simulation.

I. INTRODUCTION

I
N THIS paper, we consider the problem of stabilizing a

unicycle-type mobile robot subject to the nonholonomic

constraint that it rolls without slipping. This problem has

received considerable attention (for example, see [9]), and a

variety of control laws have been proposed. In general, these

control laws are either time-varying (such as [10]–[12], [17])

or discontinuous (such as [1]–[4], [6], [8], [13]–[15]), since

it is impossible to stabilize the unicycle using a feedback

control law that is both smooth and time-invariant [5].

In order to simplify the design of a control law, most

previous approaches neglect second-order system dynamics.

Such approaches initially assume that the unicycle is driven

by system velocities rather than by wheel torques. The

feedback control is designed for the resulting first-order

kinematic model, in which the forward speed and turning rate

are determined that will steer the unicycle to a desired state.

The control law is then augmented using techniques such as

partial feedback linearization (in particular, computed torque

methods) to generate wheel torques.

In fact, some of these previous approaches can readily

be extended to consider second-order system dynamics. We

focus in particular on a time-invariant, discontinuous control

law that was designed using invariant manifold theory [13]–

[15]. This control law drives the state of the system into a

provably invariant set, within which the system is asymp-

totically stable about the origin (or more generally, any

desired state). We show that simply by adding two terms—

one proportional to the rate of change of forward speed, the

other proportional to the rate of change of turning rate—we

can extend this control law to directly generate stabilizing

wheel torques. Because no additional feedback linearization

is required, our extension may be more robust to model

uncertainty (this potential benefit is still under investigation).

The resulting controller is similar to the hybrid one presented

by [1]-[2], which is also time-invariant and discontinuous.

But where the hybrid controller of [1]-[2] required switching

between three control laws, ours requires switching between

only two. Moreover, because our approach is based on in-

variant manifold theory, we can guarantee that our controller

will switch, at most, once.

In this paper, we first describe both a first-order kine-

matic and a second-order dynamic model of one unicycle-

type mobile robot (Section II). Then, we present both the

control law from [15] that stabilizes the first-order system

and our extension that stabilizes the second-order system

(Section III). Finally, we compare the performance of these

two approaches in simulation (Section IV).

II. A UNICYCLE-TYPE MOBILE ROBOT

Consider the unicycle-type mobile robot in Fig. 1. The

state of the system is parameterized by (x, y, θ) ∈ R
2 × S1,

where x and y are the position coordinates of the center of

the rear wheel axis and θ is the angle between the center line

of the vehicle (direction) and the x-axis. The velocity of the

robot’s center of mass is orthogonal to the rear wheels axis.

We assume the robot rolls without slipping, so

ẋ sin θ − ẏ cos θ = 0.

In this section we describe both a first-order kinematic and

a second-order dynamic model of this robot.

Fig. 1. Unicycle-type wheeled mobile robot
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A. Model

Under the rolling without slipping constraint, the dynam-

ical model of the wheeled mobile robot is given by

ẋ = v cos θ ẏ = v sin θ θ̇ = ω (1a)

mv̇ = F Iω̇ = N, (1b)

where the model parameters are the robot mass m and the

robot inertia I , and the control inputs are the pushing force F
and the steering torque N . A purely kinematic model of the

robot is given by (1a), where the control inputs are simply

the forward velocity v and the angular velocity ω. Notice

that with a suitable input transformation, a differential-drive

robot could be modeled in the same way.

B. Nonholonomic integrator

By considering the coordinate transformation

z1 = θ

z2 = x cos θ + y sin θ (2)

z3 = x sin θ − y cos θ,

with the input transformation

u1 = ω u2 = v − z3u1,

the robot kinematics (1a) can be expressed in power form as

ż1 = u1 ż2 = u2 ż3 = z2u1

By defining new state variables as

x1 = z1 x2 = z2 x3 = −2z3 + z1z2, (3)

the system takes the form of the nonholonomic integrator,

given by

ẋ1 = u1

ẋ2 = u2 (4)

ẋ3 = x1u2 − x2u1.

The nonholonomic integrator, also known as the Brockett

integrator, is considered a benchmark for controller designs

due to the simple form that exhibits the basic properties of

nonholonomic systems. The nonholonomic integrator is a

third-order driftless system, which is not linearly controllable

at any equilibrium point, and no continuous control law

can globally stabilize the system. Although this problem

has been widely researched, the nonholonomic integrator

fails to capture both the kinematics and dynamics. The

complete kinematics and dynamics must be considered for

most practical systems.

C. Nonholonomic double integrator

By applying the coordinate transformation (2) and input

transformation

u1 =
N

I
u2 =

F

m
− N

I
z3 − ω2z2,

the robot dynamics (1) can be expressed in extended power

form as

z̈1 = u1 z̈2 = u2 ż3 = z2ż1.

In the new coordinates (3), the system takes the form of the

extended nonholonomic double integrator [1]-[2], given by

ẍ1 = u1

ẍ2 = u2 (5)

ẋ3 = x1ẋ2 − x2ẋ1.

The nonholonomic double integrator can be viewed as an

extension of the nonholonomic integrator. The nonholonomic

double integrator models both the system kinematics and

dynamics as a fifth-order system with drift. There are three

states and two (first-order) dynamic control inputs, which are

the pushing force and steering torque for the wheeled mobile

robot.

III. CONTROL

The control strategy follows general ideas from previous

research into stabilizing both the nonholonomic integrator

and double integrator. In considering the states in (4) or (5),

the difficulty arises in stabilizing the system about the origin.

When the states x1 and x2 are zero, the state x3 will remain

constant (with ẋ3 = 0). Thus, a commonly proposed strategy

is to make x3 and ẋ3 converge to zero while keeping the

remaining two states away from the axis x1 = x2 = 0. Once

x3 and ẋ3 converge to zero, the remaining states x1 and x2

are stabilized [1]–[4], [8], [14].

For both the kinematic and dynamic case, a time-invariant,

discontinuous controller design is considered for stabilizing

the transformed nonholonomic system, which is equivalent

to stabilizing the original system (1). The invariant approach

presented by Tsiotras [8, 14], which is also applied to

nonholonomic chained systems in Tayebi [13], is used to

develop a kinematic switching controller to stabilize the

nonholonomic integrator (4). Then, the invariant approach

is extended in designing a dynamic controller for the non-

holonomic double integrator (5).

A. Kinematic control

The objective is to asymptotically stabilize the nonholo-

nomic kinematic model (4) about the origin. The time-

invariant, discontinuous control proposed by Tsiostras and

Kim [8, 14] is considered. Let M be a manifold in R
3

described by M =
{

x ∈ R
3 | x3 = 0

}

. The strategy is find

a control law to make M invariant such that x converges to

the origin. If x /∈ M, the control law results in x3 converging

to the invariant manifold, M. Once on the manifold, the

remaining two states, x1 and x2, converge to the origin. This

motivates the following proposition.

Proposition 3.1: For any x /∈ D∞, where the set D∞ is

defined as D∞ =
{

x ∈ R
3 | x2

1 + x2
2 = 0, x3 6= 0

}

, the

kinematic control law [8, 14]

u1 = −k1x1 +
k2x3

(x2
1 + x2

2)
x2 (6a)

u2 = −k1x2 −
k2x3

(x2
1 + x2

2)
x1, (6b)

where k1 > 0 and k2 > 0 are positive constants, stabilizes

the nonholonomic integrator (4) about the origin.
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Proof: The proof follows from Lyapunov Theory.

Consider a candidate Lyapunov function V (x) = 1
2x2

1 +
1
2x2

2 + 1
2x2

3, where V (x) > 0, ∀ x 6= 0. The control law (6)

gives V̇ = −k1x
2
1 − k1x

2
2 − k2x

2
3 < 0, ∀ x 6= 0. Thus, the

derivative is negative along the state trajectories. Since V (x)
is radially unbounded (i.e. V (x) → ∞ as ‖x‖ → ∞), the

origin is asymptotically stable for all x /∈ D∞ [7]. Moreover,

the control law (6) yields ẋ3 = −k2x3, with the solution

x3(t) = x3(0)e−k2t. Thus, x3 is exponentially stable for all

x /∈ D∞. This gives convergence to M and shows M is

invariant (i.e. Ṁ = 0). Invariance of M implies that once

the states enter M, the states never leave M for all future

time.

When x /∈ M, the control law is undefined for x2
1 +

x2
2 = 0. To avoid this singularity, an alternative control law

is used to steer away from the singularity condition. Define

the function [8, 14]

η :=
x3

√

x2
1 + x2

2

with the set Dη̄ =
{

x ∈ R
3 | |η| ≥ η̄

}

, where η̄ > 0 is a

positive constant that determines how close to the singularity

the switching between the controllers occurs.

Proposition 3.2: With the condition k2 − k1 > 0, the

kinematic control law (6) makes the set D = R
3/ Dη̄

invariant.

Proof: The proof follows from Lyapunov Theory.

Consider the candidate Lyapunov function V (η) = 1
2η2 > 0,

∀ η 6= 0. The control law (6) gives V̇ = − (k2 − k1) η2 < 0
∀ η 6= 0. Since V (η) is radially unbounded (i.e. V (η) → ∞
as ‖η‖ → ∞), η = 0 is asymptotically stable for all η ∈ D
[7]. This implies that, if x ∈ D, the states x remain in D
for all t > 0. Moreover, the states converge to the origin, as

shown in Proposition 3.1. Hence, D is invariant.

From Proposition 3.1, the manifold M is invariant and

M ∈ D. The states converge to the invariant set M and

remain in M for all t. With the value of η decreasing,

the singularity condition is never met. Hence, the states

asymptotically converge to zero, with no switching of the

controller. If the state trajectories are in Dη̄, the controller

switches to a singularity control law that drives the states out

of Dη̄ to the invariant region D.

Proposition 3.3: The singularity control law

u1 = ksx1 + kp if |η| ≥ η̄ (7a)

u2 = ksx2 + kp if |η| ≥ η̄ (7b)

where ks > 0 and kp > 0 are positive constants, yields the

region Dη̄ unstable with finite escape for all x ∈ Dη̄.

Proof: The proof follows from directly solving the

resulting differential equations. The singularity control law

yields the state equations

ẋ1 = ksx1 + kp ẋ2 = ksx2 + kp ẋ3 = kp (x1 − x2)

The solutions of these equations are

x1(t) = a1e
kst − kp/ks

x2(t) = a2e
kst − kp/ks

x3(t) = b1e
kst + b2,

where a1,2 = x1,2(0) + kp/ks, b1 = kp/ks (x1(0) − x2(0)),
and b2 = x3(0) − b1. Using the solutions of the state

equations, the singularity measure can be written as

η(t) =
b1 + b2e

−kst

√

(a2
1 + a2

2) − 2 (a1 + a2)
kp

ks

e−kst + 2
k2

p

k2
s

e−2kst

.

The rate of asymptotic convergence is ks; therefore, η
exponentially converges towards b1√

a2

1
+a2

2

as t → ∞. With η̄

chosen under the condition

η̄ >
|b1|

√

a2
1 + a2

2

,

the system leaves the region Dη̄ in finite time. Hence,

the trajectories push the states away from the singularity

condition such the stabilizing controller can then be used.

Eqns. (6) and (7) represent the discontinuous controller for

stabilizing the origin of the nonholonomic kinematic system.

B. Dynamic control

Consider the nonholonomic dynamic model as described

by (5). The objective is to asymptotically stabilize the system

about the origin. Let Md be a manifold in R
5 described

by Md =
{

ρ = (x1, x2, x3, ẋ1, ẋ2) ∈ R
5 | x3 = 0

}

. The

strategy is find a control law to make Md invariant such

that ρ converges to the origin. If ρ /∈ Md, the control law

results in x3 converging to the invariant manifold, Md. This

yields the following proposition.

Proposition 3.4: For any ρ /∈ G∞, where G∞ is defined as

G∞ =
{

ρ ∈ R
5 | x2

1 + x2
2 = 0, x3 6= 0

}

, the control law

u1 = −k1x1 − k2ẋ1 +
k3x3

(x2
1 + x2

2)
x2 (8a)

u2 = −k1x2 − k2ẋ2 −
k3x3

(x2
1 + x2

2)
x1, (8b)

with the conditions k2 > 0,
k2

2

4 > k1 > 0, and
k2

2

4 > k3 > 0,

stabilizes the nonholonomic double integrator (5) about the

origin.

Proof: The proof follows from directly solving the

resulting differential equations. Let ρ /∈ G∞. The control

law (8) yields the second-order differential equation, ẍ3 +
k2ẋ3 +k3x3 = 0. The solution is x3(t) = c1e

λ31
t + c2e

λ32
t,

with the constants

c1 = x3(0) − ẋ3(0) − x3(0)λ31
√

k2
2 − 4k3

and

c2 =
ẋ3(0) − x3(0)λ31

√

k2
2 − 4k3

.
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The eigenvalues are λ31,2
= −0.5k2∓0.5

√

k2
2 − 4k3. If k3 is

such that
k2

2

4 > k3 > 0, then the quantity
√

k2
2 − 4k3 satisfies

k2 >
√

k2
2 − 4k3 > 0. This yields −k2 ∓

√

k2
2 − 4k3 < 0,

which gives λ1 < λ2 < 0. Thus, x3 is exponentially stable

for all ρ /∈ G∞. If ρ /∈ Md, this gives convergence to Md

and shows Md is invariant (i.e. Ṁd = 0) for all ρ /∈ G∞.

This comes from x3 converging towards zero and remaining

zero for all time.

Next, assume ρ ∈ Md. The control dynamic law (8) yields

ẍ1 + k2ẋ1 + k1x1 = 0 and ẍ2 + k2ẋ2 + k1x2 = 0. As

before, the solutions are given by xi(t) = ci1e
λ1t + ci2e

λ2t,

for i = 1, 2. The constants ci1,2
are the same as before for

the initial conditions of xi and ẋi. With
k2

2

4 > k1 > 0,

the eigenvalues are λ1,2 = −0.5k2 ∓ 0.5
√

k2
2 − 4k1 < 0.

The states x1 and x2 exponentially converge to the origin as

t → ∞. Since Md is invariant with x3 = 0 and ẋ3 = 0, the

origin is exponentially stable for all ρ ∈ Md.

When ρ /∈ Md, the control law is undefined for x2
1+x2

2 =
0. To avoid this singularity, an alternative control law is used

to steer away from the singularity condition. With using the

same singularity measure from the kinematic case, consider

the set Gη̄ =
{

ρ ∈ R5 | |η| ≥ η̄
}

, where η̄ > 0.

Proposition 3.5: The singularity control law

u1 = ks2
ẋ1 + ks1

x1 + kd if |η| ≥ η̄ (9a)

u2 = ks2
ẋ2 + ks1

x2 + kd if |η| ≥ η̄ (9b)

with the conditions

ks2
> 0 kd > 0

k2
s2

4
> ks1

> 0

kd

ks1

> max
i=1,2

{ |ẋi(0) − xi(0) (λ1 − 1) |
λ1 + 1

}

yields the set Gη̄ unstable with finite escape for all x ∈ Gη̄.

Proof: As before, the proof follows directly from

solving the resulting state (differential) equations. The sin-

gularity control law yields ẍ1 = ks2
ẋ1 + ks1

x1 + kd,

ẍ2 = ks2
ẋ2 + ks1

x2 + kd, and ẍ3 = ks2
ẋ3 + kd (x1 − x2).

Solving for x1 and x2 yields

x1(t) = d11
eλ1t + d12

eλ2t − kd/ks1

x2(t) = d21
eλ1t + d22

eλ2t − kd/ks1
,

with the constants

di1 = xi(0) + kd/ks1
− ẋi(0) − xi(0)λ1 − kdλ1/ks1

√

k2
s2

− 4ks1

and

di2 =
ẋi(0) − xi(0)λ1 − kdλ1/ks1

√

k2
s2

− 4ks1

.

The eigenvalues are λ1,2 = 0.5ks2
∓0.5

√

k2
s2

+ 4ks1
. If ks1

satisfies
k2

s2

4 > ks1
> 0, then ks2

>
√

k2
s2

− 4ks1
> 0. This

implies that λ2 > λ1 > 0, and the conditions 2ks2
> 2λ2 >

ks2
> 0 and ks2

> 2λ1 > 0. With the solutions of x1 and

x2, x3 can be written as

x3(t) = σ1e
λ1t + σ2e

λ2t + σ3e
(λ1+λ2)t + σ4,

where σ1,2,3 ∈ R. The quantity σ3 can be found to be

σ3 =
ẋ3(0)

ks2

+
kd (d11

− d21
)

ks2
− λ1

+
kd (d12

− d22
)

ks2
− λ2

.

The objective is to show that the singularity measure

is decreasing and converging towards a constant as time

increases. Hence, the singularity measure can be written as

η(t) =
x3

√

x2
1 + x2

2

e−ks2
t

e−ks2
t

=
f(t)

√

g(t)

with e−(λ1+λ2)t = e−ks2
t and

f(t) = σ1e
−λ2t + σ2e

−λ1t + σ3 + σ4e
−ks2

t

g(t) = α1e
−2ks2

t + α2e
−(2λ1+λ2)t + α3e

−(λ1+2λ2)t +

α4e
−2λ1t + α5e

−2λ2t + α6,

where αi ∈ R for i = (1, . . . , 6). Under the condition

kd

ks1

> max
i=1,2

{ |ẋi(0) − xi(0) (λ1 − 1) |
λ1 + 1

}

,

the quantity α6 can be found to be

α6 = 2 (d11
d12

+ d21
d22

) > 0

The rate of asymptotic convergence of η is ks2
; therefore,

η exponentially converges towards σ3√
α6

as t → ∞. With η̄
chosen under the condition

η̄ >
|σ3|√
α6

,

the system leaves the region Dη̄ in finite time. The state

trajectories leave the singularity space such the stabilizing

dynamic controller may be applied.

Eqns. (8) and (9) represent the discontinuous controller

for stabilizing the origin of both the nonholonomic double

integrator and (dynamic) wheeled mobile robot.

IV. SIMULATION

Consider a typical “parallel parking” maneuver with the

initial conditions (x0, y0, θ0) = (0, 2, 0). We assume the

system is noiseless and that all parameters are known exactly.

Our goal is to drive the robot from its initial position (where

it starts at rest) to the origin.

A. System Dynamics

The complete robot dynamical model (1) is considered

in the simulation. The control inputs for the system are

the steering torque N and pushing force F . The dynamic

controller directly yields these inputs, but the kinematic

controller only yields the forward velocity v and the angular

velocity ω. So in the latter case, we must apply an additional

feedback law to track v and ω. In our simulation, we use

high-gain proportional feedback, as is typical for simple

robots with relatively low inertia [16]. Our results show

some of the drawbacks of this approach, as compared to a

dynamic controller. For more complex systems (robots with

high inertia, high operating speeds, significant unmodeled

dynamics, or high system noise), using a dynamic controller

may be even more advantageous [8].
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Fig. 2. Force and torque for the kinematic controller (red).

B. Results

We used the system parameters and control gains shown

in Table 1. The dynamic control gains were heuristically

determined for the system to have a satisfactory settling time

(approximately 13 seconds), while maintaining acceptable

control torques. The kinematic gains were chosen to achieve

a similar settling time (without constraint on the resultant

control torques). The results of the simulation are shown in

the figures. We chose a high proportional feedback gain to

track v and ω accurately for the kinematic controller, but

doing so requires very high forces and torques (see Fig. 2).

In practice, these forces and torques are often limited.

Figure 3 shows the response of the kinematic controller, as

compared to the dynamic one, when the control torques are

limited. The resulting trajectories all three controllers (un-

constrained kinematic, constrained kinematic, and dynamic)

are shown in Fig. 4. The unconstrained kinematic control

and dynamic control laws both have similar settling times,

but the dynamic controller has much lower control torques.

The robot angular velocity ω and forward velocity v are

shown in Fig. 5.

C. Switching

As discussed in the previous sections, when the initial

conditions do not violate the singularity condition, the system

state converges to an invariant set under the invariant control

law. Once on the invariant set, no switching will occur. If

the initial conditions do violate the singularity conditions,

the singularity control drives the states out of the singularity

condition so the invariant control law can then stabilize the

system.

Table 1.

Kinematic Dynamic

k1 k2 ks kp k1 k2 k3

0.6 0.9 2 0.9 0.25 0.75 0.25

m = 10 kg I = 15 kg m2 ks1
ks2

kd

feedback gain = 200 .3 .4 0.5
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Fig. 3. Force and torque for the dynamic and constrained kinematic
controller: constrained kinematic control (purple), and dynamic control
(green)

Hence, the most each controller will switch is only once,

when the initial conditions violate the singularity condition.

Note that switching in the control law does not necessarily

correspond to “cusps” in the robot trajectory.

When the force and torque inputs are constrained, the

system can not completely track the reference velocities

given by the kinematic controller. This implies that the

system may not remain on the invariant set, which results

in switching from the invariant controller to the singularity

controller. In fact, the system may switch more than once,

degrading the overall performance. Figure (6) shows the

switching curve for each controller. The invariant controller

is marked as “1” and the singularity controller as “0”. Since

the control torques are not limited for the unconstrained

kinematic controller, and since the control torques do not

reach their limits for the dynamic controller, both of these

controllers switch only once. The torque-constrained kine-

matic controller switches multiple times. This yields poor

performance compared to the unconstrained case, as shown

in Fig. (4). The system converges, but with a longer settling

time (due to the states having to move back to the invariant

set after each switch).

V. CONCLUSION

The problem of stabilizing a mobile wheeled robot was

considered. The control strategy was to reach an invariant

set, from which the system states are asymptotically stable. A

stabilizing kinematic controller was extended to the dynamic

case. The dynamic controller was shown to stabilize the

system, while simulations showed good performance with

manageable force and torque inputs. Increasing the veloc-

ity feedback gain improved the response of the kinematic

controller, but yielded larger control torques, which may be

impractical for some systems. Future work might extend our

approach to include noise cancellation and adaptive control.
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kinematic control (purple), and dynamic control (green)
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