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Communication

Comments on “An Optimality Principle Governing
Human Walking”

T. Bretl, Member, IEEE, G. Arechavaleta,
A. Akce, Student Member, IEEE, and J.-P. Laumond, Fellow, IEEE

Abstract—The paper in question [G. Arechavaleta, J. P. Laumond, H.
Hicheur, and A. Berthoz, “An optimality principle governing human walk-
ing,” IEEE Trans. Robot., vol. 24, no. 1, pp. 5—14, Feb. 2008] suggested that
human-walking paths minimize variation in curvature and hence can be
approximated by the solution to an optimal control problem. This conclu-
sion was reached by analysis of experimental data based on the maximum
principle. We correct two errors in this analysis and consider their conse-
quences.

Index Terms—Biological system modeling, humanoid robots, optimal
control.

I. CORRECTION

A. Two Mistakes That Were Made

In [1], it was suggested that human-walking paths can be approxi-
mated by solutions to the optimal control problem

minimize
1
2

∫ T

0

(
u2

1 + u2
2

)
dt

subject to ẋ1 = u1 cos x3

ẋ2 = u1 sin x3

ẋ3 = u1x4

ẋ4 = u2 (1)

together with the constraints

u1 ∈ [a, b], u2 ∈ [−c, c] (2)

for a, b, c > 0 and with the initial and final conditions

x(0) = xstart , x(T ) = xgoal . (3)

The final time T was assumed given, but this assumption is critical
neither to the original argument nor to ours. The center of the torso,
as viewed from above, is located at the point (x1 , x2 ). The path traced
by this point has tangent angle x3 and curvature x4 . The inputs are the
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forward speed u1 and the time derivative of curvature u2 . The model
states that, for goal-directed motion, the torso follows a trajectory that
minimizes the norm of these two inputs. Predicted trajectories were
found to match well the experimental data presented in [1].

In developing its argument for (1)–(3) as a useful model of human
walking, the authors of [1] made two errors that were later pointed out
by Akce and Bretl [2]:

1) By applying the maximum principle [3], it was found that solu-
tions to (1)–(3) must locally satisfy

u2
1 (t) + u2

2 (t) = constant (4)

for all t ∈ [0, T ]. Then, through statistical analysis of experi-
mental data, it was found that u1 may be assumed piecewise
constant. It was concluded that u2 must also be piecewise con-
stant (i.e., that optimal trajectories consist of clothoid arcs). This
conclusion is false (see Section I-B).

2) By applying a method of numerical optimization [4], it was
found that solutions to particular instances of (1)–(3) may exhibit
constant u1 but piecewise constant u2 (for example, see [1, Fig.
7]). Again, this result cannot possibly be correct (see Section
I-B). It was later shown by Arechavaleta and Laumond [5] that
if we fix u1 = 1 and consider the resultant problem

minimize
1
2

∫ T

0

(
1 + u2

2

)
dt

subject to ẋ1 = cos x3

ẋ2 = sin x3

ẋ3 = x4

ẋ4 = u2 (5)

together with the constraint u2 ∈ [−c, c] for some c > 0 and
with the same initial and final conditions (3), then solutions may
exhibit piecewise constant u2 . However, this case corresponds
to control saturation, and the only values that can possibly be
attained by constant u2 are either c or −c, which is a condition
that is not satisfied by the results of [1, Fig. 7]. Hence, we must
conclude either that [1, Fig. 7] corresponds to some optimal
control problem other than (1) and (5)—i.e., to some problem
that was not presented in [1]—or that the numerical method used
to generate [1, Fig. 7] did not produce a good approximation to
the optimal trajectory (see Section I-C).

We will address these errors in the following two sections.

B. Correcting the First Mistake

The Hamiltonian associated with (1) is

H(p, x, u) =
1
2

(
u2

1 + u2
2

)
+ p1u1 cos x3

+ p2u1 sin x3 + p3u1x4 + p4u2 (6)

where p is the costate. The maximum principle tells us that along
optimal trajectories (p∗ x∗ u∗), we must have

−ṗ∗ = ∇x H(p∗, x∗, u∗) (7)

and
u∗ ≤ arg min

u
H(p∗, x∗, u). (8)
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Condition (7) implies that

ṗ1 = 0

ṗ2 = 0

ṗ3 = p1u1 sin x3 − p2u1 cos x3

ṗ4 = −p3u1 (9)

while—in the absence of control saturation—condition (8) implies that
∇u H = 0, hence

0 = u1 + p1 cos x3 + p2 sin x3 + p3x4

0 = u2 + p4 . (10)

Differentiating (10) and plugging in (1) and (9), we find that

u̇1 = −p3u2

u̇2 = p3u1 . (11)

It is at this point that the authors of [1] make a mistake. It is indeed true
that (4) follows by direct integration of (11). However, if u1 is constant
along an optimal trajectory, then u̇1 = 0; hence, either p3 = 0, or
u2 = 0 from (11). Each case implies that the resulting trajectory is a
straight line segment (i.e., that x3 is constant):

1) If p3 = 0, then ṗ3 = 0, and so

u1 (p1 sin x3 − p2 cos x3 ) = 0

from (9). If u1 = 0, then ẋ3 = 0 from (1) and so x3 is constant.
If u1 �= 0, then p1 sin x3 − p2 cos x3 = 0, which has countable
solutions for constant p1 and p2 and so x3 is again constant.

2) If instead p3 �= 0 (hence, u2 = 0), then u̇2 = 0 and so (11) tells
us that u1 = 0. From (1), x3 is constant.

To summarize, the only solutions to (1)–(3) for which u1 is constant
are straight line segments, which does not match the experimental data
in [1]. Similarly, should [1, Fig. 7] show the numerical solution to a
particular instance of (1)–(3), then this numerical solution must not be
a good approximation to the optimal trajectory.

C. Correcting the Second Mistake

The Hamiltonian associated with (5) is

H(p, x, u) =
1
2

(
1 + u2

2

)
+ p1 cos x3

+ p2 sin x3 + p3x4 + p4u2 (12)

where p is the costate. The maximum principle again provides the
necessary conditions (7) and (8). Condition (7) implies that

ṗ1 = 0

ṗ2 = 0

ṗ3 = p1 sin x3 − p2 cos x3

ṗ4 = −p3 (13)

while condition (8) implies that

u2 =

{ −c, p4 ≥ c
−p4 , −c < p4 < c
c, p4 ≤ −c.

(14)

It is clear, therefore, that solutions to (5) may exhibit piecewise constant
u2 . However, assume there exists a nonempty interval [t1 , t2 ] ⊂ [0, T ]
on which u2 = constant and |u2 | < c. We must have ṗ4 = 0 on this
interval. From (13), this condition implies that p3 = 0, hence ṗ3 = 0,
and so finally

p1 sin x3 − p2 cos x3 = 0. (15)

There are countable solutions to (15), so it must also be the case that
x3 is constant along [t1 , t2 ], hence, u2 = 0. To summarize, the only
piecewise constant values of u2 that can possibly be exhibited by
solutions to (5) are −c, 0, and c. Therefore, should [1, Fig. 7] show the
numerical solution to a particular instance of (5), then this numerical
solution must not be a good approximation to the optimal trajectory.

II. CONCLUSION

Papers like [1] suggest that optimal control is a good framework in
which to characterize human motion and that the results of this analysis
have implications to planning and control of robots. This framework
must be applied with care, since the error between trajectories predicted
by numerical computation and trajectories observed in experiment may
be insufficient to detect problems in the underlying approach. As we
have seen, the predictions in [1] matched well the experimental data,
despite two mistakes made in the analysis.
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