Timothy Bretl

Department of Computer Science
Stanford University

Stanford, CA 94305-5447, USA
tbretl @stanford.edu

Abstract

This paper addresses the problem of planning the motion of a multi-
limbed robot in order to “free-climb” vertical rock surfaces. Free-
climbing only relies on frictional contact with the surfaces rather
than on special fixtures or tools like pitons. It requires strength, but
more importantly it requires deliberate reasoning: not only must
the robot decide how to adjust its posture to reach the next feature
without falling, it must plan an entire sequence of steps, where each
one might have future consequences. In this paper, this process of
reasoning is broken into manageable pieces by decomposing a free-
climbing robot’s configuration space into manifolds associated with
each state of contact between the robot and its environment. A multi-
step planning framework is presented that decides which manifolds
to explore by generating a candidate sequence of hand and foot
placements first. A one-step planning algorithm is then described
that explores individual manifolds quickly. This algorithm extends
the probabilistic roadmap approach to better handle the interac-
tion between static equilibrium and the topology of closed kinematic
chains. It is assumed throughout this paper that a set of potential
contact points has been presurveyed. Validation with real hardware
was done with a four-limbed robot called LEMUR (developed by the
Mechanical and Robotic Technologies Group at NASA-JPL). Using
the planner presented in this paper, LEMUR free-climbed an indoor,
near-vertical surface covered with artificial rock features.

KEY WORDS—free-climbing, climbing robots, motion plan-
ning, equilibrium constraints, closed kinematic chains, prob-
abilistic roadmaps

The International Journal of Robotics Research
Vol. 25, No. 4, April 2006, pp. 317-342

DOLI: 10.1177/0278364906063979

©2006 SAGE Publications

Motion Planning of
Multi-Limbed Robots
Subject to Equilibrium
Constraints: The
Free-Climbing Robot
Problem

1. Introduction

Imagine a human climber, nearing the top of a desolate moun-
tain peak. He hangs by his fingertips from a notch in the sheer
rock face, one foot pasted to an incut edge, the other dangling
over two thousand feet of air. He is “free-climbing,” and car-
ries no hooks or pitons to aid his ascent. A rope, attached to
the harness at his waist, runs down through several pieces of
“protection” to his partner below, but this offers little reassur-
ance. He pauses, examining the cliff above him to choose a se-
quence of hand- and foot-holds, picturing his motion through
crux sections: shift weight to one side of a vertical arete; press
down with both palms to surmount a bulge. Carefully, step by
step, he inches his way upward, always looking ahead to plan
his route.

What if a multi-limbed robot could autonomously free-
climb vertical rock walls, just like the human climber? Lo-
cating stranded mountaineers, scrambling over broken urban
terrain to help in search-and-rescue operations, exploring cliff
faces of scientific interest on the Moon and Mars—these activ-
ities are useful and exciting, but they also present a new level
of challenge for robotics. For example, it is absolutely critical
for a human free-climber to think through his moves before
performing them. The same is true for a robotic free-climber.
Not only must it select a sequence of holds on which to climb
(where a bad choice might lead to a dead-end), it must decide
how to adjust its posture to reach each hold without falling
(where a bad choice reaching one might make it impossible
to reach the next). This process of reasoning is the topic of
our paper.

1.1. Why is it Hard to Plan Free-Climbing Motions?

The only thing that keeps a free-climber from falling is fric-
tional contact with a carefully chosen set of holds—natural

317

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

318

THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

Fig. 1. Free-climbing requires coordination and balance. Only frictional contact at a carefully chosen set of holds allows the

climber to avoid falling.

features such as holes or protrusions. The climber must apply
contact forces at these holds that exactly compensate for grav-
ity without causing hands or feet to slip (Figure 1). In order to
move upward, he must adjust his internal posture to maintain
contact and equilibrium while reaching for a new hold. In ad-
dition to strength, this process requires precise coordination
and balance. For a free-climbing robot, this means reasoning
about many interdependent constraints (such as equilibrium,
closed-chain kinematics, collision-avoidance, and torque lim-
its), all of which affect it differently at each set of holds on
which it stands.

At an abstract level, we are simply asking the robot to
plan its own motions, a central and well-studied problem of
robotics (Choset et al. 2005; Latombe 1991). For many years,
the classic challenge in motion planning has been to gener-
ate the collision-free path of a rigid object or multi-link arm
through a physical workspace containing a number of obsta-
cles. However, the structure of a free-climbing robot’s con-
figuration space is quite different. To maintain contact with
the terrain, the robot must coordinate the motion of each limb
to satisfy a set of constraints (for instance, closed-loop kine-
matic constraints that ensure limb endpoints in contact with
the terrain do not move). Consequently, its configuration is
restricted to lie in a lower-dimensional surface or manifold in
configuration space. A different such manifold is associated
with each set of holds. So, grabbing or releasing a hold (tak-

ing a step) corresponds to switching between manifolds. Other
constraints are also specific to the set of holds (equivalently,
to the corresponding manifold). For example, the robot might
be able to balance at a particular configuration while standing
on a particular set of holds, but not if it releases one of them.
In fact, each manifold can be viewed as a separate configu-
ration space, with a different parameterization and subject to
different constraints.

So, motion planning for free-climbing robots involves two
levels of difficulty. Planning a single step (one-step planning)
is hard—there are several constraints to consider, they may
define a geometrically complex feasible region in the corre-
sponding manifold, and this region might contain narrow pas-
sages. But planning a sequence of steps (multi-step planning)
is even harder—there might be many potential sequences of
steps, most of which lead to dead-ends where progress is no
longer possible.

1.2. What Problems are Related to Free-Climbing?

Multi-step planning is useful for many applications other
than free-climbing. For example, whenever a humanoid robot
walks through a room, it (literally) computes a sequence of
steps to take. Of course, the humanoid probably uses a fixed
gait to make planning easier, whereas free-climbing motions
tend to be unique and non-gaited. However, there is no clear

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

distinction between free-climbing and walking—according to
books on human mountaineering, these two activities lie along
a continuum of difficulty (Long 2000).

Free-climbing also resembles dexterous manipulation.
While a multi-fingered hand grasps an object, a multi-limbed
robot “grasps” its environment. To rotate an object, the hand
sequentially grabs and releases finger contacts, just like the
free-climber grabs and releases holds. These applications
differ—for instance, the free-climbing robot must remain in
equilibrium as it moves, but when fingers are re-positioned
on an object, the object is what needs to remain in equilib-
rium. Nevertheless, many challenges are common (Bicchi and
Kumar 2000; Okamura, Smaby, and Cutkosky 2000) (and ulti-
mately, the “hands” of free-climbing robots may, themselves,
be dexterous manipulators).

Manipulation planning is another similar application. It is
distinguished from dexterous manipulation by the fact that
it generally involves the rearrangement of many objects us-
ing a simple robotic manipulator. A “manipulation path” is
a sequence of motions of the manipulator grasping an object
(one state of contact) and of the manipulator alone (a dif-
ferent state of contact), just like a free-climb is a sequence of
steps (Alami, Laumond, and Siméon 1995). The configuration
space considered in manipulation planning also consists of a
collection of manifolds, although these manifolds are usually
“flat” in the sense that when one object is being manipulated,
the configuration of all other objects remains fixed.

1.3. How are Free-Climbing Robots Different From Other
Climbing Robots?

Various climbing robots have been developed previously:

¢ Adhesive robots “stick” to featureless, flat, or smoothly
curved surfaces. Most use suction cups (Chen and Yeo
2003; Dulimarta and Tummala 2002; Nagakubo and
Hirose 1994) or magnets (Grieco et al. 1998). Conse-
quently, most are limited to environments consisting of
glass or metal.

* Robots for engineered environments have end-
effectors that match engineered features of the environ-
ment like pegs (Bevly, Farritor, and Dubowsky 2000),
fences or porous materials (Yim, Homans, and Roufas
2001), handrails or bars (Abderrahim et al. 1999), and
poles (Almonacid et al. 2003).

* Robots for pipes and ducts rely on frictional contacts
with surfaces (as do free-climbers), but take advantage
of geometric regularity to use precomputed, gaited mo-
tion (Neubauer 1994; RoSmann and Pfeiffer 1997).

In addition, new technologies have recently emerged that syn-
thesize the adhesion mechanism in gecko toes and may en-
able robots to climb a wider class of terrain, including natural

Bretl / Motion Planning of Multi-Limbed Robots 319

rock (Sitti and Fearing 2003). Each of these robots was de-
signed to make it easy to stay attached to a vertical surface
and to minimize the need for motion planning.

In this paper we take a different approach. Rather than
design a “climbing robot,” we design a motion planner to en-
able more general multi-limbed robots to free-climb. The robot
used in our experiments, the Legged Excursion Mechanical
Utility Rover (LEMUR), was designed by collaborators in the
Mechanical and Robotic Technologies Group at NASA-JPL to
explore cliff faces of scientific interest on the Moon, Mars, and
asteroids (Bretl et al. 2004b). It does not carry special fixtures
or tools to grasp a rock surface; instead, each end-effector is a
rigid “finger”” wrapped in high-friction rubber (see Figure 18),
$0 LEMUR is subject to the same constraints as a human free-
climber. But our planner is not specific to LEMUR, nor even
to free-climbing robots. For example, it has been extended to
a humanoid robot navigating severely rough (broken, sloped,
or irregular) terrain (Hauser, Bretl, and Latombe 2005b), and
recently even to the six-legged lunar robot ATHLETE (also part
of a joint project with NASA-JPL).

1.4. Organization of this Paper
This paper consists of the following sections:

¢ Problem definition (Section 2). This section intro-
duces the free-climbing robot problem. We consider
three example systems that are studied throughout the
rest of this paper. We show that a free-climbing robot’s
configuration space consists of a collection of mani-
folds associated with each state of contact between the
robot and its environment.

* Multi-step planning framework (Section 3). This
section describes our overall strategy for planning free-
climbing motions. We represent the configuration space
at two levels of resolution: coarse graphs contain-
ing points of intersection between manifolds, and fine
graphs containing paths in manifolds between points of
intersection. We search the former (generating a candi-
date sequence of hand and foot placements) to guide our
search through the latter (generating continuous mo-
tions to reach them).

* One-step planning algorithms (Section 4). This sec-
tion develops two specific algorithms embedded in our
framework. We use these algorithms to explore indi-
vidual manifolds, quickly finding points of intersection
and paths between them. They are based on the proba-
bilistic roadmap (PRM) approach to motion planning,
but they also extend this approach to better handle the
interaction between the constraint of static equilibrium
and the topology of closed kinematic chains.

¢ Experimental validation (Section 5). This section de-
scribes an integrated implementation on the LEMUR

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

320 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

robot. Using our planner (but with limited control and
sensing), LEMUR free-climbed an indoor, near-vertical
rock surface covered with artificial rock features.
These experiments, in turn, impacted the design of our
planner.

Altogether, our main contribution is an integrated plan-
ner for computing non-gaited, multi-step, free-climbing mo-
tions, bringing together several previous results (Bretl 2005;
Bretl et al. 2003, 2004a, 2004b). A key result of our work
is to show that it is possible to make a general-purpose,
multi-limbed robot free-climb—despite limited control and
sensing—provided that it has a suitable motion planner.

2. The Free-Climbing Robot Problem

The motion of a free-climbing robot is governed largely by
two constraints: contact (keep hands at a carefully chosen set
of holds) and equilibrium (apply forces at these holds that
exactly compensate for gravity without causing slip). In this
section we consider how these constraints shape the robot’s
configuration space, an understanding that is critical to the
design of our planner. To do so, we introduce three exam-
ple systems of increasing complexity, which will be studied
throughout the rest of this paper.

2.1. Double-Link Robot

First, consider a simple robot composed of two rigid links
connected by a revolute joint (Figure 2). Unlike later exam-
ples, this robot does not rely on frictional contact, but rather
“climbs” by grabbing and releasing pegs. However, its config-
uration space has the same underlying structure, and is easier
to visualize.

The robot’s workspace is a plane R* that contains several
pegs and scattered obstacles. We call each end of the robot a
hand, and each peg a hold. The robot has no fixed base, and
can move only by rotating with hands on holds, possibly ad-
justing its central angle, while avoiding collision with obsta-
cles. Figure 3 shows an example motion through a workspace
with four holds and three circular obstacles (assume that this
motion is both quasi-static and reversible).

A configuration of this robot is g = (x, y, 6, 6,), where
(x,y) € R? is the position of one end of the robot, 8, € S’
is the angle of the first link (the one containing the end at
(x, ¥)) with respect to a fixed reference frame, and 6, € S’
is the angle of the second link relative to the first. Its con-
figuration space C is R*> x S' x S'. Normally we would say
that a configuration is free if it represents a position of the
robot that does not collide with any obstacles. However, as
the double-link robot also has to maintain contact with holds,
we say that a configuration is feasible if it is free and places
at least one hand at a hold. The subset of all feasible points in
configuration space is the feasible space F.

(X,y)

Fig. 2. A double-link robot translating and rotating in a plane.

With one hand at a hold, the robot’s configuration can be
specified by only two parameters, the angles 6,, 6,. Hence,
the 4D configuration of this robot is restricted to move in 2D
subsets of configuration space. There is a different subset, a
torus, for each set of holds. We will call each set of holds a
stance, and the corresponding subset of C a stance manifold.
(In fact, a stance is an association of hands to holds. But
because of symmetry in both the double-link robot and the
three-limbed robot considered in the following section, the
particular association does not matter. So for simplicity, we
refer to a stance by its set of holds only.)

For example, Figure 4 shows the stance manifold at Hold 1,
where the motion of Figure 3(b) takes place. It is depicted as
a separate 2D Cartesian feasible space F, parameterized by
the angles 6,, 8, (both taken modulo 27, so movement past
+7 wraps continuously to —z in each direction). For a stance
at a single Hold i, we take the convention that 6, is always the
angle of the link contacting i. For a stance at two holds, two
such parameterizations are possible.

All four stance manifolds (one at each hold) are shown
in Figure 5. Three have a single path-connected component
(F,, F;, F,) and one has four components (F}, ..., F,). Some
of these feasible spaces intersect—we call each intersection
point a transition. For example, there are two configurations,
q, and g,, that place hands at both Holds 1 and 2, differentiated
by which way the joint between the links is bending (that is, by
whether 6, > 0 or 6, < 0). Both configurations are feasible at
both stances, so they are transitions between F, and F,. When
the robot moves to one of these transitions, it can take a step,
releasing Hold 1 and grabbing Hold 2 (or vice versa). In this
case, the choice of transition is crucial. Although ¢, and ¢,
are in the same (and only) component of F), they are in two
distinct components of F;, and so admit different subsequent
motion.

We can trace a sequence of feasible spaces and transitions

q1 1 93 q4 3 45
FF—>F, —-F—F —F

from the robot’s initial position at Hold 1 to its final position at
Hold 4. For example, Figure 6 shows the sequence of feasible

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Bretl / Motion Planning of Multi-Limbed Robots 321

() (b) (©)

d) (e) ()

Fig. 3. The robot’s workspace contains four holds (numbered) and three circular obstacles. It takes a sequence of steps from
Hold 1 to Hold 4.

T T
AN 1 w2
“aA
o
0 62
1 —m/2
. -1
/2 b

Fig. 4. The 2D feasible space F; (non-shaded region) associated with a stance at Hold 1. Several configurations (four feasible,
one infeasible) are shown.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

322 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

Fig. 5. The transitions ¢, . . ., gs between all four stance manifolds. Any two points connected by a dashed line represent the
same configuration g;.

020

Ginitial

020

(d)

Fig. 6. The feasible path corresponding to each step of Figure 3. Angles are taken modulo 2. Each path leads to a transition.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Holdg —

Elbow joint
] ~—

Contact chain ——

vi
(x.y)

S
Hold i

Free limb /:,

/~_L
\/,-—:—’—'

Bretl / Motion Planning of Multi-Limbed Robots 323

e

7
’

N

!y 2 -

l’l -
7 -
"I -
~
)
,

A
\ 0,

(x,»y,) "7 Pelvis (and shoulder joints)

Fig. 7. A three-limbed free-climbing robot on frictional point holds.

paths corresponding to Figure 3 (although many other paths
might accomplish the same sequence of steps).

2.2. Three-Limbed Free-Climbing Robot

Next, consider the three-limbed free-climbing robot shown
in Figure 7. In addition to keeping hands at holds (like the
double-link robot), this robot relies on friction to maintain
equilibrium. We describe this robot in more detail because
we will use it in Section 4 to develop a one-step planning
algorithm.

Model and notation. The robot consists of three identical
limbs meeting at a point, called the pelvis. Each limb has two
links and two actuated, revolute joints. All six links have equal
mass and length. The first joint in each limb (the shoulder) is
located at the pelvis, while the second (the elbow) is located
between the two links. The endpoint of each limb is called a
hand. Any configuration of the robot can be defined by eight
parameters: the coordinates x,, y, of the pelvis and the joint
angles 6, 6, of each limb. The robot’s configuration space is
R? x (ShHS.

The robot’s workspace is a vertical plane containing scat-
tered holds, with which its hands can make frictional point
contact. Each hold i is defined by a point (x;, y;), a normal di-
rection v;, and a coefficient of Coulomb friction ;. In figures,
a hold is depicted as a triangle, but the hold itself is located at
the midpoint of the long edge and is oriented along the out-
ward normal to this edge. The robot always maintains contact
with either two or three holds. In Figure 7, for example, two
hands are at holds i and k& while the third limb is moving.
Holds i and k are the supporting holds. The seto = {i, k}isa
stance. The two-limbed linkage between i and k is the contact
chain and the other limb is free.

At a 3-hold stance o (3), the robot’s continuous motion
(assumed to be quasi-static) takes place in a 2D stance man-
ifold C,,. The subset of C, @ corresponding to a fixed set
of elbow bends (a fixed sign of each 6,) can be parameter-
ized by the position (x,, y,) of the pelvis. Eight copies of

this coordinate system—one for each combination of elbow
bends—make up a complete parameterization of C,,. Like-
wise, at a 2-hold stance o (2), configurations are restricted to
a 4D stance manifold C,,,. For fixed elbow bends, C,, can
be parameterized by (x,, y,) and the angles (6,, 6,) of the
free limb—four copies of this coordinate system make up a
complete parameterization.

Static equilibrium. For the double-link robot, the feasible
space at each stance consisted of collision-free configurations.
Here, it consists of configurations at which the three-limbed
robot can balance without slipping (we allow the robot’s limbs
to cross each other). To remain balanced, the robot must apply
contact forces with hands at holds that compensate for gravity.
To avoid slipping, these contact forces must lie inside friction
cones, whose shape is governed by v; and u; at each hold.
Gravity acts at the robot’s center of mass (CM), the position
of which varies as the robot moves. Hence, this constraint
(which we refer to as balance or equilibrium) restricts the
range of positions of the CM.

On flat horizontal terrain, a necessary condition for balance
is that the robot’s CM lie above the base of its supports (Fig-
ure 8(a)). This region is called the support polygon, although
in a planar workspace it is a segment. On uneven terrain, bal-
ance is more complex. In Figure 8(b), not only is the robot’s
CM outside the base of its supports, but if it were inside,
the robot would slip and fall. There is still a support polygon
above which the CM must lie in order for the robot to balance,
but its shape depends explicitly on the robot’s stance (see Ap-
pendix B). Methods for computing the support polygon are
discussed in Bretl (2005), Bretl and Lall (2006), and Bretl,
Latombe, and Rock (2003). Here, it is enough to know that
the support polygon for the three-limbed robot is always some
segment (X, Xmax) i0 the workspace. The subset of config-
urations F, C C, placing the CM inside the vertical column
above this segment is the feasible space at o.

If a 2-hold stance o (2) and a 3-hold stance o (3) share two
holds, then they are adjacent and a transition g, € F,) N F, 3,
may exist between them. Here, transitions do not belong to

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

324 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

support polygon

i

support polygon
[

(a)

Fig. 8. Balance on (a) flat and (b) uneven terrain.

discrete collections of points (as for the double-link robot), but
rather 2D subsets. We will occasionally use the term “transi-
tion” to refer to both the subset F, N F,3, and a point ¢, in-
side it—our meaning should be clear in context. A step for the
three-limbed robot is a continuous path through F, between
consecutive transitions ¢, € F, N F,, and g, € F, N F,».

Example motions. A motion from o, = {1,2} to
Oina = {3, 4} is shown in Figure 9(a) (see also Extensions 1—
2). It consists of four steps: grab Hold 3, release Hold 1, grab
Hold 4, and release Hold 2. However, @i, 1S a transition
between stances {1, 2}, {1, 2, 3}, and {2, 3} (it lies in both
Fi, N Fip; and Fp3 N Fy), and gg, 1S a transition between
stances {2, 3}, {2, 3,4}, and {3, 4} (it lies in both F,; N Fs3y
and Fy, N F34). So only the step to grab Hold 4, moving from
Ginitiar tO Ggina 10 Fo3, has nonzero length. This does not al-
ways occur, and sometimes it is necessary to move at 3-hold
stances as well. Another rendering of the motion of Figure 9(a)
is displayed in Figure 9(b). Here, the stance manifold is de-
composed into two parts: one is the set of pelvis positions
(cross-hatched) at which some free limb configuration places
the robot in equilibrium; the other is the subset of free limb
configurations that are feasible for given pelvis positions. The
boundary contour of each subspace derives from the equilib-
rium constraint (Bretl, Latombe, and Rock 2003). As we will
see in Section 4, this decomposition is useful for planning as
well as visualization.

Figure 10(a) shows a second four-step motion. In this
example, a transition from F»; to Fs34 is only feasible for
a particular elbow bend in the limb contacting Hold 3
(Figure 10(c)). Further, it is impossible for the robot to switch
the bend in that elbow while at the stance {2, 3} (Figure 10(b)).

(b)

Consequently, the robot must grab Hold 3 with the correct el-
bow bend before it releases Hold 1. Multi-step planning is
necessary to make this type of decision.

2.3. Four-Limbed Free-Climbing Robot

Finally, consider a real robot, LEMUR, which we use in our
hardware experiments (see Section 5). Like the three-limbed
robot, LEMUR avoids falling by making frictional point con-
tact with hands at holds. We model its (quasi-static) motion
in much the same way (Figure 11), with the following differ-
ences:

¢ There are four limbs instead of three, and shoulders lie
along the outside of a hexagonal pelvis rather than at
the center. Defining a configuration requires three ad-
ditional parameters: the orientation 6, of the pelvis and
the joint angles 6,, 6, of the fourth limb. Its configura-
tion space is 11D rather than 8D. It switches between 3-
hold and 4-hold stances (respectively 5D and 3D stance
manifolds) rather than 2-hold and 3-hold stances.

e It climbs an inclined plane (in a 3D workspace), rather
than vertical. Holds, although located in this plane, now
have coordinates and normal vectors in 3D space. The
CM moves in 3D space, and the support polygon is an
actual polygon in the plane perpendicular to gravity, not
a segment (see Appendix B).

* Feasible configurations must avoid self-collision, joint-
limits, and torque-limits as well as satisfy equilibrium
and closed-chain kinematic constraints.

Figure 12 (Extension 3) shows two example steps. First (at
a 4-hold stance), LEMUR changes its internal configuration to

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Bretl / Motion Planning of Multi-Limbed Robots 325

— — — —
(a)
T
[
620
- 0 n
% -7 01
//
///// -
IS °
- 0 T
Tl 61
S~ n
620
7
/ \

/ \

h \
\ -

/ | i 5 *
/ N 01
® \
A n
\
\
3
620
620
620
T 0 x
01 T 0 3
- 61
“n 0 T
01

Fig. 9. (a) A simple motion of the three-limbed free-climbing robot. (b) The corresponding feasible path: center is the set of
feasible pelvis positions; inset are snapshots of the set of feasible free-limb angles at each pelvis position.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

326 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

()

(b)

free limb

f n
8
|

free limb

free limb

020 020

CM

=

SIS

feasible pelvis locatigns -n -
ti - /! 0 T

10ns /

01

feasible free limb angles

feasible i;elvis loc

support polygon support polygon

feasiblé/ free limb angles

(©)

Fig. 10. (a) Four steps from {1, 2} to {3, 4}. (b) Feasible pelvis positions for each set of elbow bends at {2, 3}. It is impossible
to straighten the rightmost limb without falling. (c) The transition to {2, 3, 4} is feasible only for a certain elbow bend at {2, 3}.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Bretl / Motion Planning of Multi-Limbed Robots 327

Inclined plane

4 Pelvis

Shoulder

Elbow

Free limb

Support polygon

/

Fig. 11. A four-limbed free-climbing robot (LEMUR) moving across an inclined plane containing frictional point holds.

(a)

(b)

Fig. 12. Two steps of a longer climb. (a) Moving to a transition to release the lower-right hold. (b) Grabbing a new hold.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

328 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

reach a transition at which it can subsequently release a hold.
Second (at a 3-hold stance), LEMUR brings its free hand to a
new hold. Although it is possible (but not easy) to generate
a multi-step trajectory “by hand” for the three-limbed robot,
this is no longer practical for LEMUR, as its stance manifolds
have higher dimensionality and geometric complexity.

3. Multi-step Planning Framework

Every time a free-climbing robot takes a step, it faces a
dilemma: it cannot know the constraints on its subsequent
motion until it chooses a hold, a choice it cannot make un-
til it knows where to move next. In this section we present a
framework that breaks this problem into manageable pieces.
It searches the collection of stance manifolds making up the
robot’s configuration space (see Section 2) in two stages: first,
it generates a candidate sequence of hand placements by find-
ing transitions between manifolds; second, it refines this se-
quence into a feasible, continuous trajectory by finding paths
between subsequent transitions.

3.1. Related Work

Free-climbing is similar to other types of multi-limbed lo-
comotion and to robotic manipulation (Section 1.2). In each
case we must reason about both discrete changes in contact
state and continuous motion between contact states. Previous
approaches differ primarily in which part of the problem they
consider first.

3.1.1. Motion Before Stance

Often it may not matter much where the robot contacts its en-
vironment. For example, imagine a humanoid robot travers-
ing nearly-horizontal terrain or an object being handled by a
multi-arm robotic system. In these cases, it makes sense first
to compute a robot’s (or object’s) overall motion, and next
to derive a sequence of stances (specific footsteps or grasps)
from this motion.

One technique proposed for manipulation planning is first
to plan a trajectory for the grasped object ignoring manipula-
tors, then to compute manipulator trajectories that achieve
necessary re-grasps (Koga and Latombe 1994). A similar
approach for humanoid navigation among obstacles on flat
ground is first to plan a 2D collision-free path of a bounding
cylinder, then to follow this path with a fixed gait (Kuffner
1999; Pettré, Laumond, and Siméon 2003). This approach
has been generalized to other multi-limbed robots by using
the concept of “gait controllability” to design a set of gaits
that allow arbitrary collision-free paths to be followed (Bullo
and Zefran 2002; Goodwine and Burdick 2002). A related
strategy on somewhat uneven terrain (where achieving equi-
librium is still not too difficult) is first to plan a path for the

CM (ignoring foot placement), then to compute specific foot-
steps and limb motions that keep the CM stable (Eldershaw
and Yim 2001). All of these techniques can generate multi-
step motions quickly, but they do not extend well to severely
uneven or broken terrain, and so are unlikely to work for free-
climbing robots.

3.1.2. Stance Before Motion

For a free-climbing robot, the choice of contact location is
critical. A few parts of the terrain may have high utility (such
as a sharp horizontal ledge that can produce a wide range
of reaction forces to oppose gravity), while the rest has low
utility (such as a sloping bulge that can produce only a narrow
range of reaction forces). In this case, it makes sense first to
decide where the robot should place its hands or feet, and next
to plan the continuous motion to do so.

Most previous work is based on the approach to manip-
ulation planning proposed by Alami, Laumond, and Siméon
(1995). This approach views (as we do) the manifold asso-
ciated with each set of contacts as a separate configuration
space, and expresses the connectivity among manifolds as a
“manipulation graph.” The challenge is to compute the struc-
ture of this graph efficiently. For specific systems, its exact
structure can sometimes be computed quickly. The work of
Boissonnat, Devillers, and Lazard (2000) uses analytical tech-
niques for “spider-robots” walking on horizontal terrain. For
more general systems, exactly computing the graph no longer
seems practical. One way to simplify the problem is to as-
sume partial gaits. For robots in tunnels, it is possible to re-
strict the order in which limbs are moved (Shapiro and Rimon
2003) and to assume massless limbs (Madhani and Dubowsky
1992). For peg-climbing robots, it is possible to restrict ac-
tions to high-level modules, like “grab the nearest peg” (Bevly,
Farritor, and Dubowsky 2000). For humanoid robots on hor-
izontal terrain, it is possible to restrict the next footstep to
a discrete set (Kuffner et al. 2003). But when motion is dis-
tinctly non-gaited, as in manipulation planning (Nielsen and
Kavraki 2000; Sabhani, Cortés, and Siméon 2002) or free-
climbing, each step requires the exploration of a configura-
tion space. Then, it becomes critical to decide how to allocate
planning time over all possible steps. This problem, partially
addressed by Nielsen and Kavraki (2000), motivates the two-
stage search strategy we will present in Section 3.3.

3.2. Representation

A free-climbing robot’s configuration space consists of a col-
lection of stance manifolds (Section 2). We represent the con-
nectivity among manifolds in three ways: a graph of stances,
a graph of components, and a graph of transitions.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

(a)

Bretl / Motion Planning of Multi-Limbed Robots 329

q1 q3 q5

Ginitial Ginal

q2 q4 g6

(©)

Fig. 13. The (a) stance graph, (b) component graph, and (c) transition graph representing the configuration space for the

double-link robot example (Figure 5).

3.2.1. Double-Link Robot

Figure 5 showed intersections between the 2D manifolds F;
associated with each stance of the double-link robot. Fig-
ure 13(a) shows the structure of these intersections as a graph.
Each node is a stance. Each pair of nodes i, j is connected by
an edge if there is a transition between F; and F;. So the robot
can take a step from one stance to another only if there is an
edge between the corresponding nodes in the graph. We call
this representation the stance graph.

However, this graph does not always provide enough infor-
mation to compute multi-step motions. For example, nodes 1
and 4 are connected by the edges

1 > 2—4.

But this sequence of steps is impossible (due to collision
with obstacles). Instead, the robot must traverse the following
edges (as in Figures 3 and 6):

1-2—>3—>2—->4.

Further, if the robot had started at a different configuration
Giia € F> (see Figure 5), then it could not have taken a sin-
gle step, despite the existence of edges 2 — 1, 2 — 3, and
2 — 4. A sequence of edges in the stance graph only pro-
vides a necessary condition for the existence of a feasible
multi-step motion.

Both necessary and sufficient conditions are provided by
the component graph (Figure 13(b)). Each node is one con-
nected component of a stance manifold. Two nodes E.”, F;‘
are connected by an edge if F' N F} is nonempty. The path

F,— F, — F,— F, > F,
in the component graph recovers the correct sequence of edges
l1-2—-3->2—->4

in the stance graph, showing that it corresponds to a feasible
multi-step motion.

Necessary and sufficient conditions can also be repre-
sented by the transition graph (Figure 13(c)). Each node is
a transition between manifolds (see Figure 5): for example,
g1 = F, N F} and {gs, g} = F; N F,. Twonodesq € F, N F,
and g’ € F; N F are connected by an edge if there is a con-
tinuous path between them in F;. Figure 13(c) is dual to Fig-
ure 13(b), in the sense that each node (edge) of the transition
graph maps to an edge (node) of the component graph, al-
though this mapping may not be one-to-one.

3.2.2. Three-Limbed Robot

For the double-link robot, each stance manifold is 2D and
each transition consists of two points. For the three-limbed
climbing robot, however, each manifold is either 2D or 4D
and each transition is a 2D submanifold that may have mul-
tiple components. So a concise representation of the config-
uration space becomes important. In particular, the motion in
Figure 9 involves several stances, each associated with a dif-
ferent support polygon and a different stance manifold. In this
example each manifold only has one connected component,
so the motion can be represented simply as a path through
the stance graph (Figure 14(a)). The motion in Figure 10 is
more complicated—it traverses the same stance graph, but the
manifold F,; has two connected components (corresponding
to a difference in elbow bend). Here we must look at the com-
ponent graph to understand the robot’s motion (Figure 14(b)).

3.2.3. Four-Limbed Robot

The configuration space of the four-limbed climbing robot is
significantly more complex than for the other two examples.
This robot has more degrees of freedom and must avoid joint-
limits, torque-limits, and self-collision in addition to staying
balanced on fixed holds. In fact, the shape of each stance
manifold would take a long time to compute. However, the
stance graph already provides a lot of information (Figure 15).
In particular, it indicates two potential sequences of steps from

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

330 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

(a)

Frg Py

FZSZ
(b)

Fig. 14. Graphs for the three-limbed robot examples (Figures 9—10). (a) The stance graph (same for both examples). (b) The

component graph for the second example.

{5624}

{562}

{5023}

{56_3}

Fig. 15. The stance graph for the four-limbed robot example (Figure 12). Traversed edges are highlighted.

Oinitial = {012_} to Ofinal = {5625}

{012_} — {0123} — {0_23} — {0623} —
{L623} — {5623} — {562_} — {5624}
and
{012_} — {0123} — {_123} — {5123} — {5_23}
— {5623} — {562_} — {5624}.
The first of these is actually feasible (the two steps {0123} —
{0_23} — {0623} were shown in Figure 12), as can be veri-

fied by exploring either the component graph or the transition
graph restricted to the candidate sequence.

3.3. Two-Stage Search

At the instant a human climber is about to grab a hold, he
must be able to reach the hold but also to balance without

it. In comparison, the rest of his motion (when he only has to
worry about maintaining balance, or later when he can use the
new hold to help him do so) is relatively easy. Consequently,
he is likely to plan his route up a cliff face in two stages:
first, picking out a sequence of holds to use and picturing
those moments of transition between them; second, trying to
decide if he can actually move from one transition to another.
Here, we propose a similar strategy for free-climbing robots.

3.3.1. Algorithm

Our planner alternates between exploring the stance graph
(a coarse representation of the connectivity among stance
manifolds that can be generated quickly, as it only requires
computing points of intersection) and the transition graph (a
detailed representation that is slower to generate, as it may
require computing many continuous paths). We could have
used the component graph for the second stage. However, the

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

transition graph is computationally more convenient since it
consists of points and paths rather than sets and intersections.
Hence, it can be constructed using sample-based techniques
(Section 4).

The algorithm EXPLORE-STANCEGRAPH searches the
stance graph (Figure 16). It maintains a priority queue Q of
nodes to explore. When it encounters oy,,, it computes a can-
didate sequence of nodes and edges from o, - The algorithm
EXPLORE-TRANSITIONGRAPH verifies that this candidate se-
quence corresponds to a feasible motion by searching a sub-
set of the transition graph (Figure 16). It explores a transition
q € F,NF, onlyif (0, 0') is an edge along the candidate se-
quence, and apathbetweengq, ¢’ € F, onlyif o isanode along
this sequence. We say that EXPLORE-TRANSITIONGRAPH has
reached a stance o; if some transition g € F,,,_, N F,, is con-
nected to g, in the transition graph. The algorithm returns
the index i of the farthest stance reached along the candidate
sequence. If this is not o7y,,, then the edge (o7, ;) is removed
from the stance graph, and EXPLORE-STANCEGRAPH resumes
exploration.

EXPLORE-STANCEGRAPH and EXPLORE-TRANSITION-
GRAPH require two subroutines: FIND-TRANSITION, which re-
turns a point of transition between stances o, ¢’ or failure
if F, N F, is empty; and FIND-PATH, which returns a path
between configurations ¢, ¢’ € F,, or failure if ¢, g’ are not
path-connected. These subroutines are described in Section 4.

3.3.2. Why it Works

The two-stage search strategy takes advantage of three
observations:

* Finding a transition (a single point ¢ € F, N F,) takes
much less time than finding a path to reach it (a con-
tinuous curve in F,). So it is much cheaper to compute
the stance graph than the transition graph.

* In practice, a feasible path often exists between two
feasible transitions, since transitions are the most con-
strained configurations along a multi-step path. In
other words, if F, N F,, and F,, N F,, are nonempty,
then path-connected configurations ¢ € F, N F,, and
q' € F,, N F,, are likely to exist. Hence, the stance
graph is usually a good approximation of the transition
graph.

* Most edges in the transition graph are not on the final
multi-step path. By providing necessary conditions for
the existence of a multi-step path, the stance graph al-
lows large portions of the transition graph to be pruned.

Similar observations were made by Sinchez and Latombe
(2002) about PRM planners computing collision-free paths,
motivating their decision to delay costly collision checks of lo-
cal paths until after finding a candidate sequence of collision-
free milestones.

Bretl / Motion Planning of Multi-Limbed Robots 331

3.3.3. Ordering the Search

Our search strategy is a method of postponing costly compu-
tation through initial approximation (sometimes referred to as
a “lazy” strategy). It can be improved by applying a heuristic
to decide which approximations to refine first (sometimes re-
ferred to as a “fuzzy” strategy). We order the priority queue
QO used in EXPLORE-STANCEGRAPH to make it more likely
that the candidate sequence [0y, ..., 0,] is actually feasible
when tested by EXPLORE-TRANSITIONGRAPH. To do this, we
associate a probability P (o, o’) with every edge in the stance
graph, indicating how likely it is for arbitrary configurations
q € F,,q' € F, N F, to be path-connected. We can define
this probability as inversely proportional to the amount of
time spent exploring the stance manifold F, and the transi-
tion F,N F, (Nielsen and Kavraki 2000) or based on a learned
classifier (Hauser, Bretl, and Latombe 2005a). We define the
cost of a path [0y, ..., 0,] as

n—1

n— P, 011)
i=l

and the cost of a node o as the minimum cost of a path from
Oiniial t0 0. Then, on Line 3 of EXPLORE-STANCEGRAPH the
node o has minimum cost, and on Line 5 we select the path
of minimum cost. This heuristic also allows us to relax an
implicit assumption, that if an edge (o, o) proves impossible
along one candidate path, then this edge is impossible along
any path and can be deleted. Occasionally this assumption
does not hold in practice, causing EXPLORE-STANCEGRAPH
to return “failure” incorrectly. So, rather than delete (o, o),
we reduce its probability.

4. Planning Each Step

The algorithms given in Section 3 rely on two capabilities:
finding transitions between adjacent stances, and finding paths
between subsequent transitions. Here, we present algorithms
that provide these capabilities. Since a free-climbing robot
may have to consider many potential steps over a long climb,
it is important that these algorithms be very fast.

4.1. Probabilistic Roadmaps

For a free-climbing robot, each step is different and requires
the exploration of a complex, continuous configuration space.
The Probabilistic-Roadmap (PRM) approach, or one of its
variants, is widely used for planning paths through high-
dimensional configuration spaces subject to multiple con-
straints (see Kavraki et al. 1996 or Chapter 7 of Choset
et al. 2005). It derives from the assumption that checking
whether a configuration is feasible can often be done quickly,
even if computing an exact representation of feasible space
would take prohibitive time. A PRM planner samples con-
figurations at random, retaining feasible ones as milestones.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

332 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

1 Q < {onitial}
2 while @ is nonempty

14 return “failure”

EXPLORE-TRANSITIONGRAPH(g, . .
I imax =1

3 do if FIND-PATH(04,q,q)

if icr =1

return i,y

EXPLORE-STANCEGRAPH(Ginitial; Tinitial; Ofinal)

i «— EXPLORE-TRANSITIONGRAPH(01, . .

then return the multi-step motion
else delete the edge (04, 0i11)
else for ecach unexplored stance ¢’ adjacent to o
do if FIND-TRANSITION(a, ")
then add a node ¢’ and an edge (o, 0")

3 do unstack a node ¢ from @
4 if 0 = Ofinal
5 then construct a path [o71, ..
6
7 ifi=n
8
9
10
11
12
13

Oy q)
2 for ¢’ — FIND-TRANSITION(0;, 0i+1) in each component of F,, N F,
then ic, «— EXPLORE-TRANSITIONGRAPH (041, - -

then return n

4

5

6

7 elseif icur > imax
8 then imax = fcur
9

B Jn] from Oinitial 1O Ofinal

<5 0n, Qinitial)

stack o’ in Q

i+1

<y O0n, q/)

Fig. 16. Algorithms to explore the stance graph and the transition graph.

If possible, it connects close milestones with feasible local
paths (often, straight-line paths). The milestones and local
paths together make up the probabilistic roadmap. Feasible
configurations are declared path-connected if they are con-
nected in the roadmap.

Given a fixed amount of time, a PRM planner is not guaran-
teed to find a feasible path between two configurations when-
ever when exists. But usually PRM planners work well, find-
ing a path after sampling only a few milestones. The reason
is that feasible spaces encountered in practice often have fa-
vorable “visibility” properties such as expansiveness (Hsu,
Latombe, and Motwani 1997). However, parts of a space (for
example, near “narrow passages”: Hsu et al. 1998) may have
less favorable visibility properties than others. To address this
problem, non-uniform sampling strategies try to place sam-
ples in regions of feasible space having poor expected visibil-
ity. Some strategies are general: the Gaussian strategy sam-
ples pairs of configurations, retaining one only if it is feasible
and the other is not (Boor, Overmars, and van der Stappen
1999). Hence, it tends to sample more densely near the bound-
ary of feasible space, where visibility is generally bad. Other

strategies are more specific: one approach samples configura-
tions of a robot arm where manipulability is low, for example
at singular configurations (Leven and Hutchinson 2003). Our
sampling strategy is similar to Leven and Hutchinson (2003),
although we derive it in a different way and focus on the con-
straint of balance rather than collision.

4.2. Three-Limbed Robot

We present algorithms in this section to find transitions and
paths for the three-limbed robot. They extend the PRM ap-
proach using a method of model reduction that captures the
connectivity of the robot’s 4D feasible space by exploring a
lower-dimensional subspace. We will apply the same ideas to
the LEMUR robot.

4.2.1. Finding Transitions

Each transition (an edge in the stance graph) lies in the 2D in-
tersection F, N F, between feasible spaces at adjacent stances
o ={j,k}and o’ = {j, k, g}. Rather than compute F, N F,
explicitly, we use FIND-TRANSITION (Figure 17) to sample

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Bretl / Motion Planning of Multi-Limbed Robots 333

FIND-TRANSITION(0 = {j, k}, 0’ = {j, k, g})

1 fori—1tom

2 do sample (zp, yp) within distance 2L from holds j, k, g
3 for each triplet s of elbow bends

4 do g — (zp,Yp, 5)

5 if ¢ satisfies the equilibrium test

6 then return ¢

7 return “failure”

FIND-PATH(0 = {j, k}, Ginitial; Gfinal)
1 M « {gnitial, Gfinar }, P < {}
2 > sample switches between elbow bends
3 fori—1tom
4 do sample (xp,y,) within distance 2L from hold k
but at distance 2L from hold j
5 sample (01,63) in [-7,7) X [-7,7)
6 for each elbow bend sj in the limb at hold &
7 do g «— (zp,Yp, 01,02, si)
8 if ¢ satisfies the equilibrium test
9 then add q to M
10 fori«<— 1tom

11 do sample (zp,y,) within distance 2L from hold j
but at distance 2L from hold &

12 sample (01, 602) in [—7,7) X [-7,7)

13 for each elbow bend s; in the limb at hold j

14 do q — (zp, yp, 01,02, s5)

15 if ¢ satisfies the equilibrium test

16 then add g to M

17 > sample the feasible space at fixed elbow bends
18 fori<—1ton

19 do sample (zp,y,) within distance 2L from holds j, k

20 sample (01, 603) in [—7,7) X [-7,7)

21 for each couplet s of elbow bends

22 do g1 «— (zp, yp, 01,62, 5)

23 if ¢ satisfies the equilibrium test

24 then add ¢; to M

25 for each ¢ € M within distance € of g1 # ¢

26 do if the straight-line path from ¢ to ¢
satisfies the equilibrium test

27 then add (q1,¢q2) to P

28 if Ginitial and ggna) are in the same component of (M, P)

29 then return a path from ginitial tO ¢final

30 return “failure”

Fig. 17. Algorithms to find transitions and paths.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

334 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

configurations from C, N C, until a feasible one (in equilib-
rium) is generated. If no such configuration is found before a
time limit is reached, then FIND-TRANSITION returns failure.

For a fixed triplet s of elbow bends, C, N C,/ can be pa-
rameterized by the pelvis position (x,, y,), sampled in the
intersection of three disks with radius 2L at holds j, k, g.
When the robot has hands at three holds there are eight dis-
tinct sets s, each mapping (x,,, y,) to a different configuration
q in Line 4.

4.2.2. Finding Paths

Each path (an edge in the transition graph) lies in a stance
manifold F, between subsequent transitions gi,iiq € F, N F,/
and gg,a € F, N F,». For simplicity, in this and the following
section we only consider paths of nonzero length at 2-hold
stances. To find such a path, the algorithm FIND-PATH (Fig-
ure 17) uses the PRM approach. It samples configurations
from C,, retaining samples where the robot is in equilibrium
as milestones in the roadmap. For any two milestones that are
sufficiently close, if the robot remains in equilibrium along the
straight-line path joining them, then FIND-PATH retains this
local path in the roadmap. The algorithm builds the roadmap
until either the connected component containing g,y also
contains ¢,y (and it returns a path between them), or a time
limit is reached (and it returns failure). Smoothing techniques
are used to improve the path returned by the algorithm.

For a fixed couplet s of elbow bends, C,, can be parameter-
ized by the pelvis position (x,, y,), sampled randomly in the
intersection of two disks with radius 2L at holds j, k, and the
angles (6, 6,) of the free limb, sampled randomly in the inter-
val [—, r). When the robot has hands at two holds there are
four distinct sets s, each mapping (x,, y,, 61, 6,) to a different
configuration ¢ in Line 22.

In particular, because two configurations with different
sets of elbow bends may never be connected by a straight-
line path in (x,, y,, 6, 6,), this parameterization implicitly
decomposes C, into four subsets according to s. These four
subsets are adjacent at two 3D subspaces where the joint angle
of one elbow in the contact chain is zero (that is, a “straight-
elbow” configuration). Connections between the subsets are
found by explicitly sampling configurations in these 3D sub-
spaces. If no sampled point is feasible, then FIND-PATH does
not try to connect any two configurations with different elbow
bends.

4.2.3. Model Reduction and Refined Algorithm

The feasible space of the three-limbed robot has properties
that can be used to make FIND-PATH faster. We have devel-
oped a method of model reduction that allows the connectiv-
ity of F,, (parameterized by (x,, y,, 0, 6,)) to be captured by
exploring a lower-dimensional subspace (parameterized only
by (x,, y,)). We described our method previously in Bretl,

Latombe, and Rock (2003)—for completeness, details are
provided in Appendix C. The main results are as follows:

* At a fixed pelvis position (x,, y,) satisfying closed-
chain constraints, it is easy to test whether there exists
a free-limb configuration (6,, 6,) placing the robot in
equilibrium. If so, we call (x,, y,) feasible, and denote
the subset of all such (6, 6,) by ©.

* Either ©; is connected, or it has exactly two compo-
nents. In the latter case, the two components differ by
whether 0, > 0 or 6, < 0. There exist two continuous
functions from the set of feasible (x,, y,) to ®, one
for which 6, > 0 and one for which 6, < 0.

» Hence, any feasible path of the pelvis can be lifted into
F,.

So, we can visualize the configuration space easily in 2D (in
terms of the pelvis location), to understand better the interac-
tion between balance and closed-chain kinematics. In particu-
lar, we can make the following observation: most of the time,
connected components of F, differ by an elbow bend. Con-
sequently, we can say precisely why FIND-PATH works well:
it explicitly samples those parts of C, (at “straight-elbow”
configurations) likely to have poor visibility properties. The
only other disconnections encountered in practice occur when
the pelvis is very close to one of the supporting holds—that
is, when the elbow is almost completely bent. So, we arrive
at the same conclusion of Leven and Hutchinson (2003): a
good non-uniform sampling strategy for kinematic chains is
to sample singular configurations explicitly. This result is also
implied by the more formal analysis of Trinkle and Milgram
(2002).

4.3. Four-Limbed Robot

The following changes to FIND-PATH and FIND-TRANSITION
are made for the LEMUR robot:

* LEMUR, unlike the three-limbed robot, is subject to joint
limits. It is very inefficient to check this constraint after
sampling a configuration. Often, less than 5% of sam-
pled configurations satisfying the kinematic constraint
also satisfy joint limits. Consequently, an alternative
method is used, similar to those presented in Cortés,
Siméon, and Laumond (2002), Han and Amato (2000),
and LaValle, Yakey, and Kavraki (1999). This method
generates a configuration sequentially, joint-by-joint,
enforcing both joint limits and the kinematic constraint
while sampling. At a small computational cost, it often
increases the ratio of feasible samples to over 75%.

* LEMUR’s complexity has thus far prohibited the ana-
lytical method of model reduction applied to the three-
limbed robot. However, we still use the non-uniform

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

sampling strategy motivated by this analysis (see Sec-
tion 4.2.3). It works equally well for LEMUR.

* Testing configurations and paths for torque limits is left
to post-processing. This constraint takes more time to
test than others, and was rarely exceeded during hard-
ware experiments, so postponing it speeds up planning.

5. Implementation on a Real Robot

We implemented our multi-step planner on the LEMUR robot,
developed by NASA-JPL. Using the planner, LEMUR can free-
climb the equivalent of a human climbing gym. Of course,
free-climbing also requires goal-directed sensing and reactive
execution. Visual and tactile exploration is needed to search
for potential holds and estimate their surface properties. Ac-
tive motion control is needed to maintain balance through
careful distribution of contact forces while following a trajec-
tory. For our experiments, LEMUR has few of these capabilities
(it climbs well, given these limitations). An important part of
this section is to identify areas of future work based on ob-
served failure modes.

5.1. Hardware Platform

LEMUR, shown in Figure 18 (Extension 4), consists of four
identical limbs attached to a circular chassis. The robot has a
total mass of 7 kg, and a wingspan of 1 m. Each limb contains
three revolute joints, providing two in-plane (yaw) and one
out-of-plane (pitch) degrees of freedom. Each joint is highly
geared and is capable of a maximum continuous torque of
5.0 N-m and a maximum speed of 45 deg/s. Each end-effector
is a peg wrapped in high-friction rubber. The terrain climbed
by LEMUR in each test is an indoor, artificial rock surface.
This surface is near-vertical (varied between 50-90 degrees),
planar, and covered with the same small features (holds) of
irregular shape that are used in human “climbing gyms.”

As input, the planner receives a presurveyed model of the
terrain (a list of holds) and the robot’s initial position (a con-
figuration and a stance). A human operator specifies either a
single-step goal (the next hold to grab or release) or a multi-
step goal (a distant hold, requiring a number of steps to reach).
As output, the planner either generates a path (a list of joint-
angle waypoints and feedforward torques) to be passed to
the control system, or indicates that such a path could not be
found. Before the path is actually executed, it can be evaluated
by the operator in a graphical user interface (GUI).

A separate proportional derivative (PD) feedback loop is
used to control each of the robot’s 12 motors. Joint-angle
commands and feedforward torques are provided by a tra-
jectory generator, that ramps between path waypoints at a
speed inversely proportional to tracking error. By slowing
down when the error increases, the control system tries to en-
sure that LEMUR maintains precisely coordinated limb motion

Bretl / Motion Planning of Multi-Limbed Robots 335

and, therefore, contact with the terrain. All of the low-level
electronics and software (device drivers, motor controllers,
network bus) were implemented by NASA-JPL.

5.2. Experimental Results

Two consecutive steps are shown in Figure 19 (Extension 5).
In the first step, the robot adjusts its internal posture so it
can subsequently release a hold without falling. In the second
step, the robot brings a hand to a new hold. Both of these steps
were generated autonomously by our planner, taking about
one second of computation time. Indeed, they would have
been difficult and slow to compute otherwise, because the
robot needs to make several special adjustments to its posture
in order to avoid falling. For example, in the last frame of
Figure 19(b) itis executing a classic “drop-knee” maneuver (in
the language of human climbing). This relationship between
what the robot is doing and what human free-climbers do
is striking. Our planner does not explicitly use “human-like”
maneuvers, but the motions it generates are often human-like,
because human and robotic free-climbers are governed by the
same set of tight motion constraints.

These two steps are part of a longer free-climb, shown in
Figure 20 (see also Extension 6). Again, our planner gener-
ated the entire motion autonomously, taking several minutes
of computation time. In this case, however, the robot was un-
able to execute the entire trajectory without failure (human
operators corrected several control errors along the way). We
discuss the reasons for these errors below.

5.3. Lessons From Experiments

LEMUR is well-designed and robust (courtesy of the team at
NASA-JPL), capable of precise joint-angle control. However,
several limitations remain. For example, when ascending a
parallel-sided rock “chimney,” a climber must not only place
his hands and feet against each wall, but also continue to press
outward, or he will slip. This capability is unavailable in our
experiments. Instead, joint-angle control is used, achieving
desired postures but not always desired forces. Likewise, in
our experiments, LEMUR is unable to measure its position rel-
ative to the terrain. So, although feedback control is used to
adjust internal posture, global (multi-step) motion is executed
in open-loop. The lack of sensing is also why a presurveyed
model of the terrain is provided to the multi-step planner.
Given these limitations, it is remarkable that LEMUR can
climb at all. Indeed, several problems arise as a direct conse-
quence. For example, the robot occasionally slips on holds—
sometimes dramatically (causing a fall), sometimes only a
small amount (creating problems later on). Errors accumulate
over time, eventually causing LEMUR to miss a hold that it
is trying to grab. Likewise, due to the sensitivity of LEMUR’s
joint-angle control system, a small error in robot position and
orientation may cause a large change in applied torques and
forces, possibly causing the robot to exceed its torque limits.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

336 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

Fig. 19. Two consecutive steps. (a) Releasing a hold. (b) Grabbing a hold.

Nevertheless, the fact that LEMUR can often climb success-
fully, despite these limitations, demonstrates that it is possi-
ble to make a general-purpose, multi-limbed robot free-climb,
provided it is equipped with a suitable motion planner. Our
hardware experiments also demonstrate the difficulty of multi-
step planning. We conducted several experiments in which
each individual step (the continuous motion to grab or release
a hold) was planned autonomously, but the entire sequence of
steps (the sequence of holds to grab or release) was specified
manually by a human free-climber. The “human planner” took
much longer than our planner (days rather than minutes). One

reason is that it is difficult to map climbing motions across
morphologies, even though the robot “climbs like a human.”
Also, it takes many steps for a free-climber to get anywhere,
something that has to be seen to be believed. LEMUR has a
wingspan of 1 meter, but to climb a distance of only 2 me-
ters (the height of the wall) usually takes a minimum of about
80 steps, despite the arrangement of holds. It generally takes
4-12 steps for the robot even to climb to the limit of its reach.

Our experiments also indicated when a minor change in
hardware design can avoid a major increase in planning com-
plexity. For example, our planner assumes that contact points

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Bretl / Motion Planning of Multi-Limbed Robots 337

Fig. 20. A long free-climb.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

338 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

are fixed, and do not roll. However, the hands originally used
by LEMUR were simple rigid pegs, with some nonzero radius.
As the robot moved, its limbs rotated about holds, causing the
hands to roll a short distance. Observed symptoms were sim-
ilar to those caused by slip. For a free-climbing robot it is im-
practical to take rolling into account while planning (although
this is certainly not the case in some other applications, like
dexterous manipulation). Rather, this problem was corrected
by a slight change in the end-effector design—they are still
rigid pegs, but are offset to swivel about the axis of contact,
roughly approximating an articulated wrist.

6. Conclusion

In this paper we addressed the problem of planning non-gaited
motions of free-climbing robots. First, we presented a multi-
step planning framework that follows a “stance before mo-
tion” approach, deciding where the robot should place its
hands and feet before planning the continuous motion to do so.
This two-stage strategy works well because the satisfaction of
simple conditions (the existence of a transition between two
manifolds) often implies that more complicated conditions
(the existence of a path) are also satisfied. Next, we presented
a one-step planning algorithm that extends the probabilistic
roadmap approach with a particular non-uniform sampling
strategy. This strategy derives from a method of model re-
duction that decomposes the feasible space of a three-limbed
climbing robot into two subspaces (one associated with the
contact-chain and one with the free-limb). Finally, we pre-
sented an implementation for a real robot. Using our planner,
LEMUR free-climbed an indoor, near-vertical surface with ar-
tificial rock features.

There are many opportunities for future work. Free-
climbing is an instance of the “classic” robotics problem, ul-
timately requiring tight integration of sensing, planning, and
control. We presented some immediate limitations of our cur-
rent hardware testbed in Section 5, but we also have several
longer-term objectives. For example, in this paper we assumed
the robot’s motion to be quasi-static. Good human climbers of-
ten exploit dynamics, either to save energy over long climbs or
to advance when further progress would otherwise be impos-
sible. A consideration of dynamics adds considerably to the
dimensionality and complexity of multi-step planning. Like-
wise, in a field setting, a global model of the terrain will not be
available in advance, so the robot will have to autonomously
detect and characterize holds. Visual sensing is useful, but
(unlike many other applications of computer vision) the parts
of the terrain that are hardest to see (for example, pockets
and cracks) are often the regions most likely to contain holds.
Tactile sensing may help overcome this problem, but it would
take too much time to explore the entire terrain, so the robot
would have to decide where to look for holds in addition to
deciding where to climb.

Free-climbing also raises interesting new computational
issues. For example, a free-climb is typically characterized by
a number of critical or “crux” steps that are difficult but that
the robot must take, regardless of how it chooses the rest of its
motion. For most search algorithmes, it is hard to distinguish
a critical step from an impossible one (both take a long time
to explore). A fundamental question arises: how much time
should be spent on each query? Too much, and time is wasted
on impossible steps; too little, and critical steps are missed.
We have proposed partial solutions to this problem in Bretl,
Latombe, and Rock (2004) and Hauser, Bretl, and Latombe
(2005a). Of course, the existence of a crux does not imply that
a free-climb is hard. In general, free-climbs seem to be easy
if there are either few or many holds, with hard problems in
between. However, a random distribution of holds is usually
either easy or unclimbable. In fact, designing hard problems
is extremely difficult (human free-climbers call this process
“routesetting”).

Appendix A: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Video The three-limbed robot taking
two steps.

2 Video The three-limbed robot taking
many steps.

3 Video LEMUR taking several steps in
simulation.

4 Video = LEMUR changing its posture at
fixed holds.

5 Video LEMUR taking two steps.

6 Video = LEMUR taking many steps.

Appendix B: The Constraint of Static
Equilibrium

In Section 2.3 we said that the constraint of static equilibrium
restricts LEMUR’s CM to lie above a support polygon. Here, we
briefly derive the shape of this polygon. Consider a stance o
with N frictional point holds 7, ...,ry € R, Let v; € R?
be the normal vector, w; be the static coefficient of friction,
and f; € R? be the reaction force acting on the robot at each
hold. We decompose each force f; into a component v! f;v;
normal to the terrain surface (in the direction v;) and a com-
ponent (I — v;v]) f; tangential to the surface. Let ¢ € R* be
the position of the robot’s CM (which varies with its config-
uration). Assume the robot has mass m, and the acceleration
due to gravity is g € R*. All vectors are defined with respect

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

to a global coordinate system, where g = —||g||es. Then the
robot is in static equilibrium if

> fitmg=0 (B1)

i=1

(force balance)
N

Zr,-xﬁ+cxmg=0

i=1

(B2)
(torque balance)

(I —viv]) fill, < wv| f; foralli =1,..., N.

(B3)
(friction cones)

These constraints are jointly convex in fi, ..., fy and c. In
particular, (B1)—(B2) are linear and (B3) is a second-order
cone constraint. In practice we approximate (B3) by a poly-
hedral cone (that is, by linear constraints), so the set of
jointly feasible contact forces and CM positions is a high-
dimensional polyhedron (Bretl 2005; Bretl and Lall 2006;
Bretl, Latombe, and Rock 2003). Finally, since

—c,
cxmg=mlgl| c
0

then (B1)—-(B2) do not depend on c3, so the support polygon is
the projection of this polyhedron onto the coordinates c;, c,.
There are many ways to compute this projection and to test the
membership of c. We describe an approach that works well
for our application in Bretl and Lall (2006).

Appendix C: Model Reduction and Refined
Algorithm for the Three-Limbed Robot

In Section 4.2.2 we presented an algorithm to find paths for
the three-limbed robot. In fact, the feasible space of the three-
limbed robot has properties that can be used to make this
algorithm faster. In Bretl, Latombe, and Rock (2003), we de-
scribed a method of model reduction that allows the connec-
tivity of F,, (parameterized by (x,, y,, 61, 6,)) to be captured
by exploring a lower-dimensional subspace (parameterized
only by (x,, y,)). We summarized our approach, and its im-
plications, in Section 4.2.3. For completeness, we present the
details here.

For a fixed configuration of the contact chain, speci-
fied by its elbow bends and the pelvis location (x,,y,),
denote the configuration space of the free limb by
® = [—m,) x [—m, 7). For the robot to be in equilibrium,
the abscissa x, of its CM must remain in some interval
(Xmin» Xmax)- Since the CM of the contact chain is fixed, this
constraint can be transformed into a constraint on the CM
of the free limb. Let X, and x.q.. denote the abscissas of
the CM of the contact chain and the free limb, respectively.

Bretl / Motion Planning of Multi-Limbed Robots 339

Then X /free = 3% — 2Xc/chains SO Xc/tree MUSE lie in the interval
(-xmin/free) xmax/free) s Where

Xmin/free = 3xmin - 2-xz:/chain and Xmax/free = 3xmax - 2-x<:/chain'

The abscissa of the CM of the free limb can be expressed as

Xeffree = Xp + %(3 cos 6, + cos (6, + 6,)). (Cl)
When 6, and 6, span ©, the difference § = x... — X, ranges
between — L and L. The values of 9, and 6, that are solutions of
(C1) forany § € [—L, L] define a curve in ® of constant CM
(Figure 21). Since the mapping from (6, 6,) to ® is single-
valued, no two such curves intersect. Figure 22(a) shows these
curves for § = —0.9L, —0.5L,0,0.5L, and 0.9L for some
configuration of the contact chain. Let ®, be the subset of
® consisting of configurations (6, 6,) that satisfy the equi-
librium test. This subset is the region between the two curves
defined by Smin = Xminree — Xp AN Sy = Xmawstree — Xp. It
is shown in Figure 22(b) (non-shaded area), where for this
example 6., = —0.1L and §,,,x = 0.7L.

The subset © ; is empty if and only if (8in, Smax) N (=L, L)
is empty. Given elbow bends, a configuration exists satisfying
the equilibrium constraint at a fixed pelvis location if

Omin < L and S, > —L. (C2)

We call a pelvis location (x,, y,) feasible if (C2) is satisfied.
At any feasible pelvis location, ®, can be divided into two
subsets: ®,_, where 6, < 0 (the first link of the free limb
points downward), and ® ;. , where 6; > O (the firstlink points
upward). For any given § € (8imin, 6max) N (—L, L), the values
of 6, and 6, that are solutions of (C1) form a single continuous
curve segment in © ;_ and another one in ® .. Since no two
curves for distinct values of § intersect, ® ,_ and ® ,, are each
connected. In addition, since

,,6,) = (—cos™'(§/L),0) and (C3)

(61, 6,) = (cos™'(8/L), 0)

are solutions of (Cl1), they belong to ®,_ and ©,, respec-
tively. So, each of the two segments defined by ® ,_N{6, = 0}
and ©,, N {6, = 0} span all feasible values of §. Similarly,
if two configurations (6, 6,) and (9;, 6;) correspond to the
same § = &' and both belong to ® ,_ (respectively, ©,), a
line of constant § joining them lies entirely in ®,_ (respec-
tively, @ .).

It follows from the last statement that ©; is connected if
and only if there exists 8, such that (0, 6,) or (£, 6,) belongs
to both ®,_ and ®,. This is the case if and only if at least
one of the following conditions holds:

min € (—L/2,L/2) or S & (=L/2,L/2). (C4)

Hence, any feasible continuous path of the contact chain can
be lifted into F, by letting the free limb move in either © ,_

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

340 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

1
Xelfree 1

)

finish

1
I
I
I
1
I
I
I
1
|
0y 0 }
start |
I
I
1
I
I
I
1
I
I
I

(a)

(b)

Fig. 21. Example motion with a fixed pelvis location. (a) The motion of the robot in its workspace. (b) The path taken by

(91, 92) in @f

—09L

(a)

(b)

Fig. 22. Constructing ®, for a fixed pelvis location. (a) Lines of constant § = X — X,. (b) Example ©,, between

Smin = —0.1L and §,,,, = 0.7L.

or O.. This is accomplished as follows: at the start config-
uration of the contact chain, move the free limb in ®,_ (or
®) from its current configuration to a configuration where
6, = 0; next, along the path of the contact chain, continu-
ously adjust the first joint angle 6, of the free limb to stay
in the current ©,_ (or ©,,); finally, at the end configuration
of the contact chain, move the free limb in ®,_ (or @) to
achieve a desired configuration. In some cases, it is also nec-
essary to switch between ®,_ and ®,, at configurations of
the contact chain where ® is connected.

This analysis yields a refined version of FIND-PATH that
only samples the 2D space of pelvis locations rather than the
4D C,. Each (x,, y,) is lifted directly to two configurations
q-,q. € F, by computing the angles (6,, 6,) in (C3) that are
guaranteed to be feasible (recall that ¢ € ©,_ and ¢, €
O ,1). Also, if (C4) is satisfied (that is, if © is connected)

then (x,, y,) is also lifted to a third configuration g’ where
the joint angle 0, of the free limb is either O or £m. These
configurations are added to the set M of milestones. Whenever
a configuration ¢’ is generated, it is immediately connected
to both g_ and ¢, in the roadmap. The purpose of adding g’
is to allow changes in the sign of 6,.

This refined version of the algorithm could very well use a
grid sampling technique, since the sampled space is only two-
dimensional. However, even in this case, we found that ran-
dom sampling remains easily implemented and convenient.

Acknowledgments

This work was supported by NSF grant 0412884 and by
the ATHLETE (Rough and Steep Terrain Lunar Surface

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

Mobility) project with NASA-JPL. The author would like to
thank NASA-JPL (in particular B. Kennedy and H. Aghazar-
ian) for providing LEMUR, and J.C. Latombe, S. Rock, S. Lall,
K. Hauser, and T. Miller for helpful discussions.

References

Abderrahim, M., Balaguer, C., Giménez, A., Pastor, J., and
V. Padrén. 1999. ROMA: A climbing robot for inspection
operations. IEEE International Conference on Robotics
and Automation, Detroit, M1, pp. 2303-2308.

Alami, R., Laumond, J.-P., and Siméon, T. 1995. Two manipu-
lation planning algorithms. K. Goldberg, D. Halperin, J.-C.
Latombe, and R. Wilson (Eds.), Algorithmic Foundations
of Robotics, Wellesley, MA, A K Peters, pp. 109-125.

Almonacid, M., Saltarén, R., Aracil, R., and Reinoso, O. 2003.
Motion planning of a climbing parallel robot. I[EEE Trans-
actions on Robotics and Automation, 19(3):485-489.

Bevly, D., Farritor, S., and Dubowsky, S. 2000. Action module
planning and its application to an experimental climbing
robot. IEEFE International Conference on Robotics and Au-
tomation, pp. 4009-4014,

Bicchi, A., and Kumar, V. 2000. Robotic grasping and contact:
A review. IEEFE International Conference on Robotics and
Automation, San Francisco, pp. 348-353.

Boissonnat, J.-D., Devillers, O., and Lazard, S. 2000. Motion
planning of legged robots. SIAM Journal of Computing
30(1):218-246,

Boor, V., Overmars, M., and van der Stappen, A. 1999. The
gaussian sampling strategy for probabilistic roadmap plan-
ners. In IEEE International Conference on Robotics and
Automation, pp. 1018-1023.

Bretl, T. 2005. Multi-Step Motion Planning: Application to
Free-Climbing Robots. Ph.D. thesis, Stanford University.

Bretl, T., and Lall, S. 2006. A fast and adaptive test of static
equilibrium for legged robots. IEEE International Confer-
ence on Robotics and Automation, Orlando, FL.

Bretl, T., Lall, S., Latombe, J.-C., and Rock, S. 2004. Multi-
step motion planning for free-climbing robots. Proceed-
ings of the International Workshop on Algorithmic Foun-
dations of Robotics (WAFR), Zeist, Netherlands.

Bretl, T., Latombe, J.-C., and Rock, S. 2003. Toward au-
tonomous free-climbing robots. International Symposium
on Robotics Research, Siena, Italy.

Bretl, T., Rock, S., Latombe, J.-C., Kennedy, B., and Aghaz-
arian, H. 2004. Free-climbing with a multi-use robot. In-
ternational Symposium on Experimental Robotics, Singa-
pore.

Bullo, F., and Zefran, M. 2002. Modeling and controllability
for a class of hybrid mechanical systems. IEEE Transac-
tions on Robotics and Automation 18(4):563-573.

Chen, 1.-M., and Yeo, S. H. 2003. Locomotion of a two-
dimensional walking-climbing robot using a closed-loop
mechanism: From gait generation to navigation. Interna-

Bretl / Motion Planning of Multi-Limbed Robots 341

tional Journal of Robotics Research 22(1):21-40.

Choset, H., Lynch, K., Hutchinson, S., Kanto, G., Burgard,
W., Kavraki, L., and Thrun, S. 2005. Principles of Robot
Motion: Theory, Algorithms, and Implementations. Cam-
bridge, MA, MIT Press.

Cortés, J., Siméon, T., and Laumond, J.-P. 2002. A random
loop generator for planning the motions of closed kine-
matic chains using PRM methods. I[EEE International
Conference on Robotics and Automation, Washington, DC,
pp- 2141-2146.

Dulimarta, H., and Tummala, R. L. 2002. Design and con-
trol of miniature climbing robots with nonholonomic con-
straints. WCICA, Shanghai, People’s Republic of China.

Eldershaw, C., and Yim, M. 2001. Motion planning of legged
vehicles in an unstructured environment. /[EEE Interna-
tional Conference on Robotics and Automation, Seoul,
South Korea.

Goodwine, B., and Burdick, J. 2002. Motion planning for
kinematic stratified systems with application to quasi-static
legged locomotion and finger gaiting. IEEE Transactions
on Automatic Control 18(2):209-222.

Grieco, J. C., Prieto, M., Armada, M., and de Santos, P. G.
1998. A six-legged climbing robot for high payloads. [EEE
International Conference on Control and Applications,
Trieste, Italy,

Han, L., and Amato, N. M. 2000. A kinematics-based prob-
abilistic roadmap method for closed chain systems. Pro-
ceedings of the International Workshop on the Algorithmic
Foundations of Robotics (WAFR), pp. 233-246.

Hauser, K., Bretl, T., and Latombe, J.-C. 2005a. Learning-
assisted multi-step planning. IEEE International Confer-
ence on Robotics and Automation, Barcelona, Spain.

Hauser, K., Bretl, T., and Latombe, J.-C. 2005b. Non-gaited
humanoid locomotion planning. Humanoids, Tsukuba,
Japan.

Hsu, D., Kavraki, L. E., Latombe, J.-C., Motwani, R., and
Sorkin, S. 1998. On finding narrow passages with proba-
bilistic roadmap planners. Proceedings of the International
Workshop on the Algorithmic Foundations of Robotics
(WAFR), Natick, MA, pp. 141-153.

Hsu, D., Latombe, J.-C., and Motwani, R. 1997. Path plan-
ning in expansive configuration spaces. IEEE International
Conference on Robotics and Automation, pp. 2219-2226.

Kavraki, L. E., Svetska, P., Latombe, J.-C., and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4):566-580.

Koga, Y., and Latombe, J.-C. 1994. On multi-arm manipula-
tion planning. IEEE International Conference on Robotics
and Automation, San Diego, CA, pp. 945-952.

Kuffner, J. 1999. Autonomous Agents for Real-Time Anima-
tion. Ph.D. thesis, Stanford University.

Kuffner, Jr., J. J., Nishiwaki, K., Kagami, S., Inaba, M., and
Inoue, H. 2003. Motion planning for humanoid robots.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

342 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2006

International Symposium on Robotics Research, Siena,
Italy.

Latombe, J.-C. 1991. Robot Motion Planning. Boston, MA,
Kluwer.

LaValle, S. M., Yakey, J. H., and Kavraki, L. E. 1999. A prob-
abilistic roadmap approach for systems with closed kine-
matic chains. IEEE International Conference on Robotics
and Automation, Detroit, MI, pp. 1671-1676.

Leven, P, and Hutchinson, S. 2003. Using manipulability
to bias sampling during the construction of probabilistic
roadmaps. IEEE Transactions on Robotics and Automa-
tion 19(6):1020-1026.

Long, J. 2000. How to Rock Climb! How to Rock Climb Se-
ries. Evergreen, CO, Chockstone Press.

Madhani, A., and Dubowsky, S. 1992. Motion planning of mo-
bile multi-limb robotic systems subject to force and friction
constraints. IEEE International Conference on Robotics
and Automation, pp. 233-239.

Nagakubo, A., and Hirose, S. 1994. Walking and running
of the quadruped wall-climbing robot. IEEE International
Conference on Robotics and Automation, pp. 1005-1012.

Neubauer, W. 1994. A spider-like robot that climbs verti-
cally in ducts or pipes. Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pp. 1178-1185. Munich, Germany,

Nielsen, C. L., and Kavraki, L. E. 2000. A two level fuzzy prm
for manipulation planning. Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), Takamatsu, Japan, pp. 1716-1721.

Okamura, A., Smaby, N., and Cutkosky, M. 2000. An
overview of dexterous manipulation. IEEE International
Conference on Robotics and Automation, Symposium on

Dexterous Manipulation, pp. 255-262.

Pettré, J., Laumond, J.-P, and Siméon, T. 2003. A
2-stages locomotion planner for digital actors. Eurograph-
ics/SIGGRAPH Symposium on Computer Animation,
pp- 258-264.

RoBmann, T., and Pfeiffer, F. 1997. Control of an eight legged
pipe crawling robot. International Symposium on Experi-
mental Robotics, pp. 353-346.

Sahbani, A., Cortés, J., and Siméon, T. 2002. A probabilis-
tic algorithm for manipulation planning under continuous
grasps and placements. IEEE/RSJ International Confer-
ence on Intelligent Robotic Systems, Lausanne, Switzer-
land, pp. 1560-1565.

Sénchez, G., and Latombe, J.-C. 2002. On delaying colli-
sion checking in PRM planning: Application to multi-robot
coordination. International Journal of Robotics Research
21(1):5-26.

Shapiro, A., and Rimon, E. 2003. PCG: A foothold selection
algorithm for spider robot locomotion in 2D tunnels. Pro-
ceedings of the IEEE International Conference on Robotics
and Automation, Taipei, Taiwan, pp. 2966-2972.

Sitti, M., and Fearing, R. 2003. Synthetic gecko foot-hair
micro/nano-structures for future wall-climbing robots.
Proceedings of the IEEE International Conference on
Robotics and Automation, Vol. 1, pp. 1164-1170.

Trinkle, J., and Milgram, R. 2002. Complete path planning
for closed kinematic chains with spherical joints. Interna-
tional Journal of Robotics Research 21(9):773-789.

Yim, M., Homans, S., and Roufas, K. 2001. Climbing with
snake-robots. ITFAC Workshop on Mobile Robot Technol-
ogy, Jejudo, Korea, pp. 7-12.

Downloaded from ijr.sagepub.com at UNIV OF ILLINOIS URBANA on September 19, 2015

http://ijr.sagepub.com/

