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ABSTRACT 
 
This paper considers the control of planetary 
rovers that use mobility strategies incorporating 
aggressive maneuvers such as jumping or 
hopping. Aggressive maneuvers are difficult to 
execute since they involve very precise discrete 
changes in the set of continuous dynamics 
governing the system. Robustness to noise in the 
time of initiation of these changes is an appropri-
ate design criterion for control synthesis, which for 
a linear system can be formulated as a quasicon-
cave optimization problem and efficiently solved. 
This paper extends this synthesis method to a 
representative nonlinear system, the “climbing 
robot,” and demonstrates the effectiveness of the 
resulting controller. 
 
 

1 INTRODUCTION 
 
One way of increasing the potential level of 
success of a mission involving planetary robotics 
is to enhance the mobility of the robots involved. A 
more mobile robot is able to explore more varied 
terrain and to explore basic terrain more efficiently 
and robustly. There is always a fundamental limit 
in the level of mobility of a robot given its hardware 
design. The extent to which this limit is reached is 
dependent on the range of motions that can be 
handled by on-board motion planning and control 
algorithms. 
 
One class of motions that have proved difficult to 
plan and to execute is that of aggressive maneu-
vers such as non-periodic jumping or hopping. A 
general aggressive maneuver is defined in this 
paper as a trajectory beginning and ending with a 
discrete change in the set of continuous dynamics 
governing a robotic system, such that the interme-
diate set of dynamics has low controllability. By 
enabling aggressive maneuvers, mobility can be 
increased without increasing size, mass, or 

physical complexity, an important consideration for 
planetary exploration applications. 
 
The idea of using sophisticated planning and 
control software to enable the design of robots 
with minimal hardware has been explored previ-
ously.1 However, previous solutions to the problem 
of planning and executing any incorporated 
aggressive maneuvers have been application-
specific. This problem can be framed more 
generally in the language of hybrid systems 
theory, by modeling the complete system as a 
collection of continuous models with rules for 
discrete transitions between them. If this hybrid 
model has one of several very specific forms, it 
can be analyzed as in Heemels et al.2 Specific 
applications involving this type of model such as 
periodic legged locomotion have been addressed.3 
However, tractable methods for planning and 
control synthesis for general hybrid models do not 
exist. 
 
Randomized motion planning, a technique capable 
of online generation of feasible planned trajecto-
ries even in complex configuration spaces, has 
also been applied to problems of this type.4,5,6 
However, feasible trajectories for aggressive 
maneuvers that are obtained from a randomized 
planner are not guaranteed to be robust. 
 
This paper shows how to modify feasible trajecto-
ries for aggressive maneuvers in order to guaran-
tee a specified level of robustness. 
 
Section 2 motivates the use of aggressive maneu-
vers and presents the “climbing robot” as a 
representative system to be examined. Section 3 
describes the challenges involved in executing a 
single aggressive maneuver with this system, in 
particular motivating the consideration of robust-
ness to time-of-transition as an appropriate control 
design criterion. Section 4 formulates the corre-
sponding synthesis problem for a general linear 
system, and shows how this formulation can be 
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extended to a nonlinear system. Section 5 applies 
the extended nonlinear control synthesis to the 
climbing robot system and shows its effectiveness. 
Finally, Section 6 presents possibilities for future 
work. 
 
 

2 MOTIVATION 
 
Planetary mobility strategies based on jumping or 
hopping robots can be much more efficient than 
those based on wheeled or rocket-powered 
robots.7 Several systems based on this approach 
are already under development. The increased 
mobility of these systems also allows the explora-
tion of more varied terrain and provides an 
additional layer of mission robustness. If the 
robots are unable to move to a desired location 
because normal mobility strategies are insufficient 
or have failed, the more aggressive jumping or 
hopping strategies can be used. However, more 
sophisticated control algorithms are required 
before the mobility strategies of these systems can 
be considered reliable. 
 
In order to begin developing these control algo-
rithms, this paper examines a minimal robotic 
system that in fact depends on jumping in order to 
navigate through its environment. This system is 
the simple “climbing robot,” shown in Figure 1. 
This robot moves in a vertical plane and consists 
of a single rigid bar, the endpoints of which can 
attach to, detach from, and exert a torque on pegs 
scattered throughout its environment. 
 

 
 
Fig. 1. A simple climbing robot, shown performing 

an aggressive maneuver. This maneuver is a 
jump between two pegs, consisting of a de-
tach action, free flight, and an attach action. 

 
Although this system and its environment are 
highly idealized, the planning and control tech-
niques developed in this paper can be applied 
directly to more complicated real designs. As will 
be described in Section 3, as long as the contact 
dynamics operate on a small enough time scale 
that they can be modeled as discrete, then the 
control synthesis method presented can be 

applied to situations with three-dimensional motion 
and high-DOF manipulation. 
 
 

3 CONTROL DESIGN CRITERION 
 
This section frames the problem of executing a 
single aggressive maneuver, or a single jump of 
the climbing robot. It characterizes the preimage of 
a jump endpoint, discusses the selection of a 
nominal transition point, and motivates the 
consideration of robustness to time-of-transition as 
an appropriate control design criterion. 
 
3.1 PROBLEM SETUP 
 
Assume, as shown in Figure 2, that the robot, 
which consists of a massless link of length L  
between two equal masses m , is attempting to 
jump from Peg A  to Peg B . To simplify analysis 
in this particular example, it will detach End 1 from 
Peg A  and, after a period of free flight, attach End 
2 to Peg B . In general, it could attach either end 
to Peg B . 
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Fig. 2. Problem setup for the climbing robot 

attempting to jump between Pegs A and B. 
 
The robot's trajectory is not controllable after it 
detaches from the first peg, so the success of a 
jump depends only on the state ),( 00 θθ &  of the 
robot at the time it detaches. Given these initial 
conditions and the location ),( AA yx  of Peg A, the 
position ))(),(( tytx  of End 2 of the robot for any 
future time t  is expressed as follows: 
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Assume that End 2 of the robot can attach to Peg 
B  if it is within some radius ε  of the peg. For a 
jump to be successful, End 2 must be able to 
attach to Peg B  at some future time 1t . For the 
peg geometry ),( yx ∆∆  shown in Figure 2, this 
relationship is expressed as follows: 
 

 ε≤







−
−

−







∆
∆

21

1

)(
)(

A

A

yty
xtx

y
x

 (3) 

 
 
3.2 GOAL PREIMAGE 
 
The set of solutions to Equations 1-3 forms a 
region in the space of initial conditions. In the 
absence of noise, this region is the preimage of 
the jump goal ),( yx ∆∆ , since the robot can detach 
from Peg A  at a state corresponding to any point 
in this region to safely arrive at Peg B .8 
 

 
Fig. 3. Goal preimage in the range [ ]12,120 −∈θ&  

for a single jump of the climbing robot. The 
region is the shaded area only. 

 
Figure 3 shows a portion of this preimage for the 
climbing robot for the peg geometry 

)2,2(),( −=∆∆ yx  and 1=L . The width of the region 

is determined by the variable ε . The set of 
solutions for 0=ε , resulting in free-flight trajecto-
ries that exactly place End 2 on Peg B , is a curve 
running through the region. 
 
If some control was possible during free-flight, the 
preimage would be expanded to include those 
initial states resulting in jump trajectories that can 
be modified to place End 2 on Peg B . This 
expansion would be quantified by modifying 
Equations 1-3, from which the preimage is 
calculated. 
 
3.3 NOMINAL TRANSITION POINT 
 
Any planning technique can be used to select a 
nominal transition point, or a nominal set of initial 
conditions inside the goal preimage at which to 
detach from Peg A . Typically there will be 
considerations such as obstacle avoidance or 
global path optimization that result in the selection 
of a particular detach state. However, it is possible 
that the selection is arbitrary, because characteriz-
ing the entire goal preimage is computationally 
intensive. 
 
In particular, the goal preimage is very small 
relative to the space of all possible initial condi-
tions, and presents a bottleneck for any planning 
algorithm. The complete configuration space of the 
climbing robot can be described as non-expansive 
around any single jump.4 This characteristic is 
typical of the configuration spaces of robotic 
systems using aggressive maneuvers. 
 
In this paper, it is assumed that a continuous 
trajectory to a nominal transition point is given. 
The problem, discussed in the next section, is to 
locally modify this trajectory to achieve a specified 
level of robustness. The actual transition point 
taken along the modified trajectory will be close 
enough to the nominal point to satisfy the higher-
level considerations mentioned above. 
 
3.4 ROBUSTNESS CRITERION 
 
Several types of uncertainty arise in the execution 
of an aggressive maneuver. First, the uncontrolla-
ble trajectory between discrete transitions, or the 
free-flight of the climbing robot between detach 
and attach points, is subject to disturbances. 
Second, there is input noise and measurement 
noise before the first discrete transition, or before 
the detach point. 
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Each type of uncertainty alters the goal preimage. 
For example, assume that the accumulated error 
from free-flight disturbances can be bounded such 
that Equations 1 and 2 are known to be accurate 
to within a radius δ . Then a new radius of 
attachment can be defined as δεε −=′ , shrinking 
the preimage to a set of initial conditions that are 
still guaranteed to result in trajectories that place 
End 2 within ε  of Peg B. Measurement noise 
before the first discrete transition shrinks the 
preimage in a similar way, assuming that this 
noise can be bounded. Continuous input noise, or 
noise in the torque input while still attached to the 
first peg, has the same effect. 
 
However, there is also discrete input noise, or 
uncertainty in the exact time at which the robot 
detaches from Peg A . This time is uncertain 
because the first transition is modeled as a 
discrete event but typically has associated 
dynamics which are difficult to quantify. In addi-
tion, if the system controller is implemented 
digitally, the sample rate of the controller con-
strains the exact time at which the discrete 
transition can be initiated. For example, if the 
actuator that initiates the detach action for the 
climbing robot operates at 5 Hz, the detach time 
will vary over a range of 1.0±  seconds. 
 
The effect of this type of uncertainty on the goal 
preimage can not be computed independently of 
the continuous trajectory of the robot before the 
detach action. 
 
Assume that the contact dynamics are such that 
the detach action can be initiated independently of 
the continuous torque inputs. Also assume that the 
detach action has a sufficiently short time scale 
such that the assumption that it is a discrete 
transition is valid. Finally, assume that the robot 
can actuate normally until the time at which it 
detaches. In other words, between the time at 
which the robot commands a detach action and 
the time at which the detach action actually 
occurs, the effect of the continuous torque input 
does not change. 
 
Then for a jump to be considered robust, the 
continuous trajectory through the nominal detach 
state must remain within the goal preimage for at 
least as long as the range over which the time-of-
transition is expected to vary. In other words, 
instead of modifying the goal preimage, the 
continuous trajectory must be modified in order to 
make the system robust to this uncertainty. 

For example, consider the nominal transition point 
)2.3,3.1(),( 00 −=θθ &  in the goal preimage shown in 

Figure 3. A feasible continuous trajectory through 
this point, shown in Figure 4, was generated using 
a randomized planner of the type described by 
Sanchez and Latombe.6 If this trajectory were 
tracked exactly and if the detach action occurred 
at exactly the right time, the resulting jump would 
be successful. However, the trajectory only 
remains within the goal preimage for 1.0  seconds, 
so if the time-of-transition is expected to vary over 
a range of larger than 05.0±  seconds, then the 
plan is not robust. 
 

 
Fig. 4. Arbitrary trajectory through a desired 

transition point in a portion of the goal pre-
image for a single jump of the climbing robot. 
The trajectory remains in the region for only 

1.0 seconds. 
 
 

4 CONTROL SYNTHESIS 
 
This section formulates the synthesis problem for 
a general linear system as a quasiconcave 
optimization problem, which can be solved 
efficiently. It then extends this formulation to apply 
to nonlinear systems. 
 
In both cases it will be assumed that the goal 
preimage is convex. This assumption does not 
hold for the region shown in Figure 3 and does not 
hold in general either for linear or nonlinear 
systems. However, this assumption holds within 
some local neighborhood of a nominal transition 
point, which is all that needs to be considered for 
local modification of the continuous trajectory. In 
addition, this assumption allows the use of the 
highly tractable synthesis method to be presented 
in this section, the solution to which provides a 
good sub-optimal policy. This solution could be 

θ  
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used as a starting point for optimization within the 
full nonconvex region. Therefore, a convex subset 
of the true goal preimage will be used for synthe-
sis. 
 
4.1 LINEAR FORMULATION 
 
Assume that the time of initiation of the first 
discrete transition for a single aggressive maneu-
ver is expected to vary over a time interval T . 
Then the control synthesis problem is given as 
follows: 
 
Problem 1. Generate a trajectory that starts and 
remains in the goal preimage corresponding to a 
single aggressive maneuver for a continuous time 
interval of at least length T . 
 
Assume that the set of continuous dynamics 
before the discrete transition is given by 
 
 )()()1( ttt BuAxx +=+  (4) 
 
Also assume that the goal preimage is convex and 
can be expressed by the set of linear inequalities 
 
 gF ≤)(tx  (5) 
 
Then Problem 1 can be expressed more precisely 
as follows: 
 
Problem 2. (Existence) 
 
 Find : ux ,0  
 Subject To : Ttt ≤≤≤ 0,)( gFx  
   Ttutuu ≤≤≤≤ 0,)( maxmin  
 
The initial condition 0x  is a reachable point in the 
goal preimage. After the solution to this problem is 
found, an additional modification to the nominally 
planned continuous trajectory must be generated 
to reach 0x . 
 
Problem 2 is non-trivial when the system is not 
stabilizable about any point in the convex con-
straint region, which is often the case. 
 
In general, the solution to Problem 2 is not unique. 
The problem statement can be extended to 
include multiple objectives. For example, let 

T),( UX  be the set of all solutions ),( 0 ux  to 
Problem 2 for a given value of T . Then the 

solution to Problem 2 of minimum input norm for a 
given value of T  can be found by solving 
 
Problem 3. (Minimum Input Norm) 
 
 Find : 

2,0
minarg uux  

 Subject To : T),(),( 0 UXux ∈  
 
 
In addition, let ),(:)( 0 ux→Ψ TT  be the solution to 
Problem 3, and define the minimum-escape-time 
function as 
 
 }),()(:inf{),( 0 TTTf UXux ∈Ψ=  (6) 
 
Then the solution to Problem 3 for the maximum 
possible value of T , the “most robust” solution of 
minimum input norm, can be found by solving 
 
Problem 4. (Most Robust) 
 
 Find : ),(maxarg 0,0

uxux f  
 
The most robust solution can tolerate the highest 
possible level of uncertainty in time-of-transition. 
 
The solution to Problem 2 that lies within the goal 
preimage of minimum possible size can be found 
in a similar way. This solution is called the “most 
precise” solution, since it results in an actual 
transition point that is closest to the nominal 
transition point for a given level of uncertainty. 
Assume without loss of generality that the set of 
linear equalities given in Equation 5 are centered 
about the origin. Then the most precise solution is 
found by solving 
 
Problem 5. (Most Precise) 
 
 Find : γux ,0

minarg  
 Subject To : Ttt ≤≤≤ 0,)( gFx γ  
   Ttutuu ≤≤≤≤ 0,)( maxmin  
 
4.2 LINEAR SOLUTION 
 
The state of the system at any time step t  is 
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So for a fixed value of T , the constraints on the 
domain of Problem 2 are linear in the variables 0x  
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and u . The additional objective function of 
Problem 5 is also a linear function of these 
variables and an additional size parameter γ . 
Therefore, both problems are convex and can be 
solved with a standard linear program solver. The 
objective function of Problem 3 is a quadratic 
function of u  while the constraints are identical to 
those of Problem 2, so Problem 3 is also convex 
and can be solved as a quadratic program. 
 
Further, sublevel sets of ),( 0 uxf−  are convex, so 

),( 0 uxf  is quasiconcave. Thus Problem 4 is a 
quasiconcave maximization problem. Quasicon-
cave optimization problems can be solved effi-
ciently using bisection around a convex sub-
problem.9,10 
 
4.3 EXTENSION TO NONLINEAR SYSTEMS 
 
Although the control synthesis method presented 
in Sections 4.1 and 4.2 assumes linear dynamics, 
it extends naturally to nonlinear dynamics. 
 
It has been assumed that the goal preimage has 
been truncated to a local convex subset. There-
fore, it can be expected that a linearization about 
an arbitrary point in the convex subset will be very 
accurate throughout that subset. As a result, the 
solution to the control synthesis problem applied to 
the linearization will be a very good approximation 
of the optimal solution of the nonlinear synthesis 
problem within the convex subset. 
 
This method will not necessarily provide a good 
approximation of the optimal solution of the 
synthesis problem within the full non-convex goal 
preimage. 
 
 

5 APPLICATION 
 
This section applies the extended nonlinear 
control synthesis method presented in this paper 
to the climbing robot system. The resulting 
trajectories are presented in comparison to the 
arbitrary trajectory shown in Figure 4. 
 
5.1 LINEARIZATION 
 
The nonlinear dynamics of the climbing robot 
system are as follows: 
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For an operating point ),( 00 θθ & , which can be 
chosen to be the nominally desired discrete-
transition point, the linearized dynamics can be 

expressed in terms of perturbations θ̂  and θ&̂  as 
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5.2 RESULTS 
 
The nominally desired transition point for each set 
of results is )2.3,3.1(),( 00 −=θθ & , the same that was 
used in Section 3.4. 
 

 
Fig. 5. Most-robust trajectory through a convex 

subset of the goal preimage. 
 
Figure 5 shows the most robust solution of the 
control synthesis problem. This solution is the 
trajectory that remains in the convex subset of the 
goal preimage as long as possible, in this case for 
0.26 seconds compared to 0.1 seconds for the 
arbitrary trajectory. So the system is now more 
than twice as robust to noise in time-of-transition. 
 
The optimal trajectory appears to be curving to 
follow the arc of the goal preimage, although it 
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begins and terminates in corners of the convex 
subset in order to maximize the time in the region. 
This result indicates both that better performance 
would be obtained by a synthesis method that 
considered the full non-convex transition region 
and that a good heuristic for solving the non-
convex problem might be to try to follow a param-
eterized curve through the region. 
 

 
Fig. 6. Comparison between linear and nonlinear 

models of the most-robust trajectory. 
 

 
Fig. 7. Comparison between full arbitrary and 

most-robust trajectories. 
 

Figure 6 shows a comparison between the 
trajectories obtained from integrating the linearized 
model and the true nonlinear model. As expected, 
the trajectories are very close, supporting the 
claim that the linear control synthesis method 
presented in Section 4 can be applied to nonlinear 
systems to generate a good approximation to the 
true optimal control policy. 
 
Figure 7 shows the full continuous trajectories 
associated with the arbitrary and most robust 
solutions, starting from )0,57.1(),( −=θθ & . As the 
two trajectories reach the nominal transition point, 
the most robust trajectory deviates locally from the 
arbitrary trajectory in order to reach the initial point 
of the solution shown in Figure 5. 
 
Figure 8 shows the most precise solution of the 
control synthesis problem at a required level of 
robustness 1.0=T  seconds. This solution is the 
trajectory that remains for this length of time within 
the smallest possible convex region surrounding 
the desired transition point. Figure 8 indicates that, 
if the expected level of noise is known a priori, the 
controller can achieve much better performance. 
 

 
Fig. 8. Most-precise trajectory through a convex 

subset of the goal preimage. 
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Fig. 9. Tradeoff between the required level of 

robustness and the achievable objectives. 
 
Finally, Figure 9 shows the tradeoff between the 
required level of robustness and the minimum 
required input norm or minimum required goal 
preimage size. These curves demonstrate that the 
consideration of noise in time-of-transition affects 
the design of a robust controller, a primary 
argument of this paper. 
 
 

6 CONCLUSION 
 
This paper motivated the use of aggressive 
maneuvers to increase the level of mobility of a 
planetary robotic system toward its fundamental 
limit for a given hardware design. It demonstrated 
that robustness to noise in the time of the discrete 
transition that begins an aggressive maneuver is 
an appropriate design criterion for control synthe-
sis, and presented a synthesis formulation for 
linear systems that could be efficiently solved. It 
extended the synthesis to apply to nonlinear 
systems, and applied the resulting algorithm to a 
specific robotic system, the “climbing robot.” 
 
There is high potential for future work. For exam-
ple, the synthesis method presented in this paper 
could be extended to consider non-convex goal 
preimages, as mentioned in Section 5. Also, the 
control synthesis method could be integrated with 
a global planner. 
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