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Abstract— We consider a left-invariant optimal control prob-
lem on the six-dimensional special Euclidean group. Helical
trajectories are extremals of the optimal control problem, and
we derive an explicit parameterization of these helices. Using
this parameterization of the helical extremals, we compute the
relative equilibria of the Hamiltonian system associated with
the optimal control problem. For a particular choice of system
parameters, we use Jacobi’s sufficient condition to determine
which of the relative equilibria correspond to local optima of
the optimal control problem. We show that the optimality of a
relative equilibrium is completely determined by the curvature
and torsion of the helix that the trajectory traces.

I. INTRODUCTION

In this paper, we consider an optimal control problem
with historical roots tracing back to Kirchhoff’s analysis of
elastic wires. Kirchhoff considered the problem of finding
equilibrium shapes of a thin inextensible wire that minimizes
elastic potential energy [1]. This same problem can be
formulated as an optimal control problem for an oriented
vehicle on the special Euclidean group SE(3) [2]. In both
the elastic wire problem and the optimal control problem,
helices are stationary solutions of the objective function, i.e.,
helices are equilibrium shapes of the elastic wire and helical
trajectories satisfy the necessary conditions for the optimal
control problem. The analysis in this paper extends previous
characterizations of these helical extremals. Furthermore, for
a special class of helices, we provide a characterization of
the helical trajectories that are local optima, and not just
extrema, of the optimal control problem.

In the optimal control problem that we consider, the cost
function is a weighted sum of the turning rates of an oriented
vehicle traveling at a constant speed. The optimal control
problem is left-invariant, and we can therefore derive a re-
duced Hamiltonian system that governs the costate trajectory
of the optimal control problem. We initially consider a cost
function in which two of the three turning rates of the
vehicle are given the same weight. As mentioned earlier,
helical trajectories of the oriented vehicle are extremals of
this optimal control problem. These helices correspond to a
particular set of solutions of the reduced Hamiltonian system,
and these solutions were previously shown to correspond to
the roots of a cubic polynomial [2]. In this paper, we give an
explicit parameterization of these helices. Our analysis of the
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helical extremals also leads to an explicit parameterization of
the relative equilibria of the Hamiltonian system associated
with the optimal control problem.

These relative equilibria correspond to extremals of the
optimal control problem, but they do not necessarily corre-
spond to local optima. We consider the question of optimality
in the special case when all three turning rates of the
vehicle are weighted equally in the cost function. For this
choice of system parameters, we determine which of the
relative equilibria correspond to locally optimal solutions
of the optimal control problem. We do this by applying
Jacobi’s sufficient condition for optimality and computing
conjugate points along the helices corresponding to the
relative equilibria. The sufficient conditions we use are
particularly suited for analyzing relative equilibria because
they only require solving a linear time-invariant system,
whereas Jacobi’s condition generally requires solving a linear
time-varying system. Our results show that the optimality of
a helical trajectory corresponding to a relative equilibrium is
completely determined by the curvature and torsion of the
helical trajectory.

Previous work in the optimal control literature has mainly
focused on the necessary conditions for optimality for the
problem that we consider, and on showing that helices
satisfy these conditions. As already discussed, Biggs et al.
showed that helical extremals of this optimal control problem
correspond to the roots of a cubic polynomial [2]. They later
used these helical trajectories in path planning problems for
rigid bodies and autonomous underwater vehicles [3], [4].
Walsh et al. studied the same optimal control problem in the
context of optimally landing an airplane, and gave particular
attention to the helical solutions [5]. Justh and Krishnaprasad
considered similar optimal control problems on the higher
dimensional special Euclidean groups SE(n) [6]. Necessary
conditions for the optimal control problem in this paper were
also analyzed by Jurdjevic [7].

As discussed earlier, local solutions of the optimal control
problem that we consider are stable equilibrium configu-
rations of a thin inextensible elastic wire. Previous work
from the mechanics literature can therefore be applied to
the problem in this paper. Helical equilibria of an elastic
wire were analyzed by Chouaieb et al. using a noncanonical
Hamiltonian formulation [1], [8]. Shi and Hearst used helical
configurations of an elastic wire to study supercoiling of
DNA [9]. Stability results for helical elastic wires were
derived by Goriely and Tabor [10] using a dynamic model
of the elastic wire. Majumdar and Raisch [11] also derived
stability bounds for helices based on a direct analysis of the



second variation of the elastic potential energy.
In Section II, we state the optimal control problem on

SE(3), and we give necessary and sufficient conditions for
optimality for the problem. In Section III, we compute the
relative equilibria of the optimal control problem, and along
the way, we derive an explicit parameterization of the helical
extremals of the problem. In Section IV, we determine which
relative equilibria correspond to locally optimal solutions of
the optimal control problem for a particular choice of system
parameters. Concluding remarks concerning generalizations
of the results in this paper are given in Section V.

II. THE OPTIMAL CONTROL PROBLEM

In this section, we state an optimal control problem on
the matrix Lie group SE(3), and we give necessary and
sufficient optimality conditions for the problem. Let c > 0
be a constant, and consider the optimal control problem

minimize
q,u

1

2

∫ 1

0

cu21 + u22 + u23 dt

subject to q̇ = qξ(u)

q(0) = I, q(1) = q1,

(1)

where u : [0, 1]→ R3 is the control input, q : [0, 1]→ SE(3)
is the system state and is given by

q(t) =

[
R(t) r(t)

0 1

]
, (2)

where R(t) ∈ SO(3) and r(t) ∈ R3, and q1 ∈ SE(3) is
fixed. The function ξ : R3 → se(3) is defined by

ξ(u) =

[
û v
0 0

]
,

where vT = [1 0 0], and the function ̂ is defined by âb =
a × b for all a, b ∈ R3. The optimal control problem (1) is
left-invariant, so there is no loss of generality by assuming
q(0) = I [12]. Further, there is no loss of generality by
setting the final time to be 1, since a problem with a different
final time can be non-dimensionalized to have the form of
(1).

In Section II-A, we state necessary conditions for the
problem (1) based on the Pontryagin maximum principle.
In Section II-B, Jacobi’s condition is used to state sufficient
conditions for the problem (1).

A. Necessary conditions for optimality

Necessary conditions for (q, u) to be a local optimum of
the problem (1) are derived in Theorem 5 of [12] using the
Pontryagin maximum principle [13], and we summarize them
here. Extremal controls are given by

u1 =
1

c
µ1 u2 = µ2 u3 = µ3, (3)

where µ is a solution of system

µ̇1 = 0 µ̇4 = µ3µ5 − µ2µ6

µ̇2 = kµ1µ3 + µ6 µ̇5 = c−1µ1µ6 − µ3µ4

µ̇3 = −kµ1µ2 − µ5 µ̇6 = µ2µ4 − c−1µ1µ5,

(4)

where k = (c−1−1). The system (4) is obtained by applying
Lie-Poisson reduction to the Hamiltonian system associated
with the optimal control problem (1), and the function µ is
the costate trajectory for the problem (1), after left-translation
to the identity element in SE(3) [14].

A solution µ of (4) and the corresponding control u
defined in (3) are normal when the initial condition µ(0)
for the system (4) is in the set

A = {a ∈ Rn : (a2, a3, a5, a6) 6= (0, 0, 0, 0)} (5)

and are abnormal otherwise. Relative equilibria of the Hamil-
tonian system associated with the optimal control problem
(1) are fixed points of the system (4).

B. Sufficient conditions for optimality

If u is a normal control input, we can determine if (q, u)
is a local optimum of (1) by applying Jacobi’s condition, i.e.,
testing for the absence of conjugate points [15]. Theorem 7
of [12] provides a method for computing conjugate points in
the problem (1), which we now summarize.

Let µ be a normal solution of (4), let u be the control
defined in (3), and let q be the solution of q̇ = qξ(u) with
the initial condition q(0) = I . Let F be the linearization of
the system (4), i.e., F is the time-varying matrix

F =


0 0 0 0 0 0
kµ3 0 kµ1 0 0 1
−kµ2 −kµ1 0 0 −1 0

0 −µ6 µ5 0 µ3 −µ2

c−1µ6 0 −µ4 −µ3 0 c−1µ1

−c−1µ5 µ4 0 µ2 −c−1µ1 0

 .

Define the matrix G and the time-varying matrix H by

G = diag(c−1, 1, 1, 0, 0, 0) H =

[
−û 0
−v̂ −û

]
.

Now solve the system of linear time-varying matrix dif-
ferential equations

Ṁ = FM J̇ = HJ + GM (6)

with the initial conditions M = I and J = 0. The matrix
J(t) describes the first-order change in q(t) with respect to a
change in µ(0). When a nonzero change in µ(0) produces no
change (to first order) in q(t) for some t ∈ (0, 1], t is called
a conjugate time. The solution (q, u) is a local optimum of
(1) for the boundary condition q1 = q(1) if it contains no
conjugate times, i.e., if det (J(t)) 6= 0 for all t ∈ (0, 1].

The sufficient condition outlined above is particularly
useful for evaluating relative equilibria, since the matrices
F, G, and H do not depend on the state q of the optimal
control problem. At a relative equilibrium, these matrices
are constant, and finding the matrix J only requires solving
a linear time-invariant system.



III. COMPUTATION OF THE RELATIVE EQUILIBRIA

In this section, we compute the fixed points of the system
(4). We begin in Section III-A by analyzing the solutions
of (4) that produce helical trajectories in SE(3). In Section
III-B, we compute the initial conditions for the system (4)
that produce these helices. In Section III-C, we determine
which of these initial conditions are fixed points of the
system (4). In Section III-D, we compute the state trajectories
corresponding to the fixed points of the system (4).

A. Curves with constant curvature and torsion

In this section, we analyze the solutions of (4) that produce
helical extremals of the optimal control problem (1). We
begin by defining the curvature and torsion of a solution
of the differential equation q̇ = qξ(u), where u satisfies (3)
for some normal solution of the system (4). Following the
analysis in [2], the curvature κ and torsion τ can be defined
in terms of the costate µ by

κ2 = µ2
2 + µ2

3 τ = µ1 −
µ2µ5 + µ3µ6

κ2
. (7)

Trajectories in SE(3) that have constant curvature and
torsion are helices. To find these helical trajectories, we must
compute the solutions of (4) with constant curvature and
torsion. Taking the time derivative of κ2 and simplifying
using (4) gives

2κκ̇ = −µ̇4.

The curvature κ is therefore constant if and only if µ4 is
constant. Taking the time derivative of τ and simplifying
using (4) and (7) gives

τ̇ = µ̇4
2τ − µ1

κ2
.

We see that the torsion is also constant if µ4 is constant.
We therefore see that the curve traced by the trajectory q
in SE(3) is a helix if and only if µ4 is constant, as was
previously shown in [2].

Now suppose µ is a normal solution of (4) such that µ4 is
constant. Denote the initial condition for µ by µ(0) = a so
that the components of µ satisfy µ1(t) = a1 and µ4(t) = a4
for all t ∈ [0, 1]. Since κ is constant, we have

µ2 = κ cosφ µ3 = κ sinφ

for some function φ : [0, 1]→ [0, 2π). We also have that

φ = arctan

(
µ3

µ2

)
and

φ̇ =
µ2µ̇3 − µ3µ̇2

κ2
.

Simplifying this expression using (4), (7), and µ1 = a1 gives

φ̇ = τ − c−1a1,

which is a constant that we will denote by γ = τ − c−1a1.
The function φ is therefore given by

φ(t) = γt+ φ0

for some φ0 ∈ [0, 2π). The expressions for µ5 and µ6 are
found from (4) to be

µ5 = −kµ1µ2 − µ̇3 = µ2(a1 − τ)

µ6 = −kµ1µ3 + µ̇2 = µ3(a1 − τ).

Summarizing the results in this section, solutions of (4)
with constant µ4 have the form

µ1 = a1 µ4 = a4

µ2 = κ cos(γt+ φ0) µ5 = µ2(a1 − τ)

µ3 = κ sin(γt+ φ0) µ6 = µ3(a1 − τ),

(8)

where κ, τ , γ, and φ0 are determined from the initial
condition µ(0) = a.

B. Initial conditions corresponding to helices

In the previous section, we analyzed the helical extremals
of the problem (1) by assuming that we know a solution of
(4) with constant µ4. We now find the initial conditions µ(0)
that produce solutions of (4) with constant µ4. In [2], it was
shown that these solutions correspond to the roots of a cubic
polynomial. Below, we give an explicit parameterization of
these solutions.

We begin by taking the time derivative of µ̇4 and simpli-
fying using (4) and (7), which gives

µ̈4 = κ2
(
µ2
1 − µ1τ − µ4

)
− µ2

5 − µ2
6. (9)

Taking another time derivative and simplifying using (4) and
(7) gives

...
µ4 = −

(
µ2
1 + κ2 − 4µ4

)
µ̇4. (10)

For µ4 to be constant, we need the solution of (10) to satisfy
µ̇4 = 0, which only happens when µ̇4(0) = µ̈4(0) = 0.
Solutions of (4) with constant µ4 therefore correspond to
choosing initial conditions µ(0) = a that satisfy

µ̇4(0) = a3a5 − a2a6 = 0 (11)

and

µ̈4(0) = a1 (a2a5 + a3a6)− a4
(
a22 + a23

)
− a25 − a26 = 0,

where we computed µ̈4(0) by expanding (9) using (7).
We now determine the initial conditions µ(0) of the system

(4) that satisfy the two conditions µ̇4(0) = µ̈4(0) = 0.
Suppose µ is a normal solution of (4) that produces a helical
trajectory q in SE(3) with curvature κ and torsion τ . From
(7), we have that a = µ(0) satisfies

a2 = κ cosφ0 a3 = κ sinφ0 (12)

for some φ0 ∈ [0, 2π). From (8), we must have

a5 = a2(a1 − τ) a6 = a3(a1 − τ) (13)

Using (12)-(13), it is easy to see from (11) that µ̇4(0) = 0.
Using the expressions (13) for a5 and a6 in the condition

µ̈4(0) = 0 gives
a4 = τ(a1 − τ),



Summarizing the results in this section, suppose κ > 0,
τ ∈ R, a1 ∈ R, and φ0 ∈ [0, 2π) are given. Define

a2 = κ cosφ0 a3 = κ sinφ0 a4 = τ(a1 − τ)

a5 = a2(a1 − τ) a6 = a3(a1 − τ).
(14)

Then the solution of (4) with µ(0) = a is given by (8), the
control u defined in (3) is normal, and the resulting trajectory
q in SE(3) is a helix with curvature κ and torsion τ .

All helical extremals of the problem (1) correspond to
solutions of (4) with initial conditions of the form (14).
The expressions in (14) therefore give an explicit parame-
terization of the helical extremals in terms of the parameters
κ, τ , a1, and φ0. The implicit parameterization described
in [2], which is given in terms of the roots of a cubic
polynomial, is equivalent to the explicit parameterization
given above, in the sense that both parameterizations describe
all the possible helical extremals of the problem (1). Further,
the explicit parameterization in (14) complements similar
characterizations of helices in the mechanics literature (cf.
Lemma 4.1 in [1]).

C. Fixed points

We now compute the relative equilibria of the Hamiltonian
system associated with the optimal control problem (1),
i.e., the fixed points of the system (4). These fixed points
correspond to a subset of the helical trajectories that we
found in the previous section. In particular, fixed points are
solutions of the form (8) with γ = 0. The condition γ = 0
gives a1 = cτ . Using a1 = cτ in (14) gives

a2 = κ cosφ0 a3 = κ sinφ0 a4 = τ2(c− 1)

a5 = τa2(c− 1) a6 = τa3(c− 1).

We now have an explicit parameterization of the fixed points
of the system (4) in terms of the parameters κ, τ , and φ0,
given by

µ1 = cτ µ4 = τ2(c− 1)

µ2 = κ cosφ0 µ5 = κτ(c− 1) cosφ0

µ3 = κ sinφ0 µ6 = κτ(c− 1) sinφ0.

(15)

D. Integrating the state equations

We now compute the state trajectory q corresponding to
a relative equilibrium. At the fixed points (15), the control
input u is constant, and we can easily integrate the state
equation q̇ = qξ(u). The state equation can be decomposed
using (2) to give

Ṙ = R û ṙ = Rv (16)

The solution of the system (16) is

R(t) = I +
û

η
sin ηt+

û2

η2
(1− cos ηt) (17)

r(t) =


τ2

η2 t+ κ2

η3 sin ηt
τu2

η2

(
t− 1

η sin ηt
)
− u3

η2 (cos ηt− 1)

τu3

η2

(
t− 1

η sin ηt
)

+ u2

η2 (cos ηt− 1)


where η = ||u|| =

√
τ2 + κ2.

IV. OPTIMALITY OF THE RELATIVE EQUILIBRIA

In this section, we determine which of the relative equilib-
ria defined in (15) correspond to local optima of the problem
(1) in the case when c = 1. In this case, the fixed points of
(4) are given by

µ1 = τ µ4 = 0

µ2 = κ cosφ0 µ5 = 0

µ3 = κ sinφ0 µ6 = 0,

(18)

for some choice of κ > 0, τ ∈ R, and φ0 ∈ [0, 2π).
We begin in Section IV-A by integrating the system of

matrix differential equations (6). Then, in Section IV-B, we
find the determinant of the matrix J, which was defined in
Section II-B. In Section IV-C, we determine the optimality
properties of the fixed points (18).

A. Integrating the sufficient conditions

In this section, we solve the linear matrix differential
equations in (6). With µ given by (18), the matrices F, G,
and H defined in II-B now have the form

F =

[
0 −v̂
0 −û

]
G =

[
I 0
0 0

]
H =

[
−û 0
−v̂ −û

]
We can decompose the 6 × 6 matrices M and J into 3 × 3
blocks according to

M =

[
M11 M12

M21 M22

]
J =

[
J11 J12

J21 J22

]
.

The matrix differential equation Ṁ = FM, which is now
time-invariant since u is constant, can be written as

Ṁ11 = −v̂M21 Ṁ12 = −v̂M22

Ṁ21 = −ûM21 Ṁ22 = −ûM22

with the initial conditions M11 = M22 = I and M12 =
M21 = 0.

We can immediately conclude that

M21 = 0 M11 = I (19)

Next, we note that

Ṁ
T

22 = MT
22û

This equation is identical to the differential equation we
solved to find R(t) in Section III-D, and we therefore have

M22(t) = RT (t)

We then have

M12(t) = −v̂
∫ t

0

RT (s) ds (20)

Next, the matrix differential equation J̇ = HJ+GM, which
is time-invariant, can be written as

J̇11 = −û J11 + M11 J̇12 = −û J12 + M12

J̇21 = −û J21 − v̂J11 J̇22 = −û J22 − v̂J12

(21)

with the initial conditions J11 = J12 = J21 = J22 = 0.



As was the case for M22, the homogeneous solution for
each of the four differential equations in (21) is RT . Using
(19), we can now solve for J11 to get

J11(t) = RT (t)

∫ t

0

R(x)M11(x) dx

= RT (t)

∫ t

0

R(x) dx

(22)

Next, using (20), we can solve for J12 to get

J12(t) = RT (t)

∫ t

0

R(x)M12(x) dx

= −RT (t)

∫ t

0

R(x) v̂

∫ x

0

RT (y) dy dx

(23)

Using (22), J21 is found to be

J21(t) = −RT (t)

∫ t

0

R(x) v̂ J11(x) dx

= −RT (t)

∫ t

0

R(x) v̂ RT (x)

∫ x

0

R(y) dy dx

(24)

Finally, using (23), J22 is found to be

J22(t) = −RT (t)

∫ t

0

R(x) v̂ J12(x) dx

= RT (t)

∫ t

0

R(x) v̂ RT (x) . . .∫ x

0

R(y)v̂

∫ y

0

RT (z) dz dy dx

(25)

We have an explicit expression for R(t), given in (17). We
can therefore evaluate the integrals in (22)-(25) to find the
elements of the matrix J.

B. Evaluation of the determinant

We now use the expressions in (22)-(25) to compute the
determinant of the matrix J, which we will use in the next
section to evaluate the optimality of the fixed points in (18).
We begin by noting that a helix transitions from being locally
optimal to being non-optimal when a conjugate point appears
at t = 1, since conjugate points cannot appear within the time
interval (0, 1) without passing through t = 1 (see Corollary
2.2 in [16]). Since we are interested in finding the boundary
between optimal and non-optimal helices, we will evaluate
the determinant of the matrix J(t) at t = 1.

The determinant of the matrix J(1) can be written as a
function of κ and η =

√
τ2 + κ2, and has the form

Λ(κ, η) =
κ2

16η13
(
A(η)κ4 +B(η)κ2 + C(η)

)
, (26)

where

A(η) =
1

η3
(
8η4 + 48η2 − 12

+ 2
(
8η4 − 20η2 + 3

)
cos η

+ η
(
4η4 − 60η2 + 19

)
sin η

− 4
(
2η2 − 3

)
cos 2η − 8η sin 2η

− 6 cos 3η − η sin 3η
)

B(η) =
8

η2
(
− 2η5 − 17η3 + 6η

− η
(
5η4 − 16η2 + 8

)
cos η

−
(
η6 − 17η4 + 4η2 − 5

)
sin η

+ η
(
η2 + 2

)
cos 2η + 2

(
η2 − 2

)
sin 2η + sin 3η

)
C(η) = 4η

(
2η4 + 24η2 − 24 + 2

(
3η4 − 12η2 + 16

)
cos η

+ η
(
η4 − 20η2 + 8

)
sin η − 8 cos 2η − 4η sin 2η

)
.

The leading coefficient in (26) is always positive. The
determinant Λ(κ, η) therefore vanishes when the fourth order
polynomial with coefficients A(η), B(η), and C(η) is zero.

While the fixed points in (18) depend upon the parameters
τ , κ, and φ0, the determinant Λ(κ, η) only depends upon
τ and κ, and is independent of φ0. We can therefore
visualize the boundary between locally optimal and non-
optimal solutions by partitioning the half-plane (τ, κ) with
κ > 0 into optimal and non-optimal regions, as shown in the
next section.

C. Optimality of the fixed points

We now determine which fixed points in (18) correspond
to locally optimal solutions of the optimal control problem
(1). The boundary between optimal and non-optimal points in
the (τ, κ) half-plane corresponds to points where Λ(κ, η) =
0. When Λ(κ, η) vanishes, we have

κ2 =
−B(η)±

√
B(η)2 − 4A(η)C(η)

2A(η)
(27)

The right-hand side of (27) depends only on η =
√
τ2 + κ2.

Therefore, for each η > 0, we can compute κ using (27)
(if the right-hand side of (27) is real and positive), and then
compute τ from

τ2 = η2 − κ2

= η2 −
−B(η)±

√
B(η)2 − 4A(η)C(η)

2A(η)

(28)

The expressions (27) and (28) give a parameterization in
terms of the parameter η > 0 of the points in the (τ, κ)
half-plane that satisfy Λ(κ, η) = 0.

A fixed value of η corresponds to a semicircle in the (τ, κ)
half-plane. For each solution κ of (27), there are at most two
choices of τ that satisfy (28). Since (27) can have at most two
positive solutions, we conclude that each semicircle in the
(τ, κ) half-plane intersects the curve satisfying Λ(κ, η) = 0
in at most four places.

The boundary between optimal and non-optimal points in
the (τ, κ) half-plane is plotted in Figure 1. The equation
Λ(κ, η) = 0 has multiple disconnected sets of solutions, and
these are shown by the black curves in Figure 1. Moving
outward from the origin, each of these curves corresponds
to an increase in the number of conjugate points along
the resulting helix. The green region corresponds to helices
with no conjugate points, and therefore the green region
corresponds to local optima of the problem (1) with c = 1.
The blue region corresponds to helices with one conjugate



τ

κ

Fig. 1: Subsets of the (τ, κ) half-plane with different optimality properties. The green region corresponds to relative equilibria
that are local optima of the optimal control problem (1) for c = 1, i.e., helices that do not have conjugate points. The blue, red,
cyan, and magenta regions correspond to non-optimal helices with one, two, three, and four conjugate points, respectively.

point, the red region to helices with two conjugate points,
and so on.

V. CONCLUSION

We have derived an explicit parameterization of the helical
extremals and the relative equilibria of the optimal control
problem (1). We also determined which relative equilibria
correspond to local optima of the problem (1) in the case
when each term in the cost function is weighted equally. We
found that the optimality properties of the relative equilibria
are completely characterized by the curvature and torsion of
the corresponding helical trajectory in SE(3).

In future work, optimality of the relative equilibria given in
(15) could be determined when c 6= 1. As was the case in this
paper, doing so would involve solving a linear time-invariant
system. More generally, optimality of the helical solutions
given in (8), which are not necessarily relative equilibria,
could be analyzed. However, the linear system (6) would
become time-varying in this case and may be difficult to
solve analytically

Other generalizations include considering more general
cost functions and system dynamics. A cost function of
the form uTQu, where Q is a symmetric positive definite
matrix, accounts for coupling between the turning rates. In
the mechanics literature discussed in Section I, this cost
function corresponds to an elastic wire with an anisotropic
cross-section [8]. Similarly, an oriented vehicle with non-
constant speed corresponds to an elastic wire that can stretch
axially [1]. Determining the optimality properties of these
more general systems would be of interest to both the control
and mechanics communities.
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