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Abstract— In this paper, we show that the free configuration
space of a Kirchhoff elastic rod is path-connected. By free
configuration space, we mean the set of all equilibrium config-
urations of the rod that are stable (i.e. locally minimize elastic
potential energy) and do not experience self-intersections. We
also provide semi-analytical expressions for paths in the free
configuration space that connect any two stable equilibrium
configurations that do not contain self-intersections. These
results are applied to the problem of manipulation planning
for deformable objects.

I. INTRODUCTION

Consider a thin deformable wire or cable held at each end
by a robotic gripper (Fig. 1). We call this deformable object
an elastic rod. Static configurations of the rod that can be
observed in experiments are those that locally minimize the
elastic potential energy stored in the rod (i.e. are stable equi-
librium configurations) and do not contain self-intersections.
(See Fig. 3d for an example of a self-intersecting rod.) Given
two such configurations, we are interested in finding a path
of each gripper that causes the rod to move between the two
configurations while avoiding self-collisions and remaining
a stable equilibrium configuration throughout the motion.
Equivalently, we may think of the problem as finding a
path of the rod through the set of all non-self-intersecting
stable equilibrium configurations. We call this set the free
configuration space of the rod. In this paper, we prove that
this set is path-connected so that such a path always exists.
Furthermore, we provide a semi-analytical procedure for
constructing the paths of the robotic grippers that produce
the desired motion of the rod.

Manipulation planning in the set of equilibrium config-
urations of the rod was proposed in the seminal work of
Lamiraux and Kavraki [1]. Rather than directly planning
paths of the grippers holding the rod, this approach attempts
to plan a path of the rod through its free configuration space.
However, the procedure to derive the free configuration space
was not clear at the time of their work. Bretl and McCarthy
[2] later showed that the configuration space of the rod, i.e.
the set of all equilibrium configurations (both stable and
unstable), is a six-dimensional smooth manifold. They also
provided a computational test to distinguish between stable
and unstable equilibrium configurations, and a collision
checking algorithm was used to find self-intersections. This
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Fig. 1: An elastic rod (yellow) held at each end by a robotic
gripper (blue).

allowed for a sampling-based planning algorithm to be used
in which configurations of the rod could be sampled directly.

The work of Bretl and McCarthy [2], however, did not
provide insight into the topological properties (such as path-
connectedness) of the free configuration space, since the test
to determine membership in this set was completely com-
putational. Therefore, given starting and goal configurations
of the rod, there was no guarantee that a feasible path of
the rod in the free configuration space exists. Furthermore,
the test for membership in the free configuration space
was computationally expensive compared to sampling points
in the configuration space, which adversely affected the
computation time needed to find a feasible path.

We consider the configuration space derived by Bretl
and McCarthy [2], which we denote by A. Given a point
a ∈ A, the corresponding configuration of the rod is found
by solving a system of ordinary differential equations using a
as the initial condition. These differential equations are scale
invariant [3], and we use this property to construct paths in
the free configuration space of the rod connecting any two
non-self-intersecting stable configurations. Our main result
is that the free configuration space of the elastic rod is path-
connected. Once we have found a path in the free configura-
tion space, we can map the path of the rod to a path of the
robotic grippers holding the ends of the rod. Compared to
using a sampling-based algorithm, this approach guarantees
that a feasible path will be found and allows us to bypass
some of the computations needed to determine if sampled
points are members of the free configuration space.

A qualitative description of our approach to planning in
the free configuration space is described in Section II. The
free configuration space of the rod is described in Section
III. In Section IV, we show that the differential equations
governing the rod’s configuration are scale-invariant. We use
this property in Section V to show that the set of non-self-
intersecting stable configurations is path-connected. These
results are applied to the manipulation planning problem in
Section VI. Future work is discussed in Section VII.
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Fig. 2: By cutting the rod in Fig. 2a in half and then scaling the shortened rod by a factor of two, as in Fig. 2d, a new
configuration of the rod in Fig. 2a can be found. This gives a canonical way of “unbending” a deformed rod. These canonical
deformations allow us to manipulate the rod between two non-self-intersecting stable equilibrium configurations.

II. A QUALITATIVE DESCRIPTION OF
MANIPULATION

Before giving a mathematical description of the elastic rod,
we provide a qualitative interpretation of our approach to
the problem of manipulation planning. Our method relies on
three properties of the rod. Here, we give arguments based on
experimental images of an elastic rod and physical intuition.
In later sections, we will mathematically prove these facts.

First, consider the elastic rod of unit length in Fig. 2a,
and attach a coordinate frame to the right end of the rod
(we will call the right end the base of the rod). Assume that
this equilibrium configuration of the rod is stable and does
not contain self-intersections (this is satisfied by the rod in
Fig. 2a). Relative to the coordinate frame at the right end of
the rod, let r(t) with t ∈ [0, 1] be an arc-length parameterized
curve describing the shape of the rod. Now imagine that the
rod is grasped at length L = 1/2 from the base of the rod,
as in Fig. 2b, and then the remaining portion of the rod is
removed, as in Fig. 2c. The first property that we emphasize
is that the remaining portion of the rod, which has length
L = 1/2, is stable and non-self-intersecting. This portion of
the rod is described by the curve r(t) with t ∈ [0, 1/2].

Now consider a second elastic rod of unit length whose
base is held in the same position and orientation as the rod
of length L = 1/2. One possible equilibrium configuration
of the longer rod, shown in Fig. 2d, is a scaling of the
shorter rod. More specifically, the curve 2r(t/2) = r(Lt)/L
with t ∈ [0, 1] is an equilibrium configuration of the rod.
Furthermore, we claim that this configuration is non-self-
intersecting (which is clear from Fig. 2d) and is stable (which
is not immediately obvious). This is the second property that
we want to emphasize.

In this construction, the length L = 1/2 at which we
grasped the rod could have been any positive fraction of the
rod’s length, i.e. the above arguments hold for any L ∈ (0, 1].
Now imagine that this process is repeated continuously,
starting with the unit length rod in Fig. 2a, removing a
small portion of the rod, and then rescaling the rod. As
this process is executed, the shape of the rod is described
by the curve r(Lt)/L, t ∈ [0, 1], with L starting at 1 and

continuously decreasing toward 0. This gives us a continuous
deformation of the unit length rod, and as L → 0, the unit
length rod approaches the straight configuration. Therefore,
this procedure gives us a canonical way of “untwisting” and
“unbending” the rod, and if the initial configuration of the rod
is stable and non-self-intersecting, every configuration along
this canonical deformation is stable and non-self-intersecting.

Given any two non-self-intersecting stable equilibrium
configurations of the rod, we can apply the above procedure
to deform each rod arbitrarily close to the straight config-
uration, and therefore arbitrarily close to each other. The
final property that we emphasize is that once the two rods
are close enough to the straight configuration, either rod
can be deformed into the other while remaining a stable
equilibrium configuration and without intersecting itself.
The concatenation of these three deformations (canonically
“unbending” toward the straight shape, manipulating close to
the straight shape, and then canonically bending into the new
configuration) allows us to manipulate the rod between any
two non-self-intersecting stable equilibrium configurations.

Once the three properties described in this section are
accepted as true, this proves that the free configuration space
of the elastic rod is path-connected, and the problem of
manipulation becomes easy. In the remainder of the paper, we
prove these three properties and answer the question “How
close to the straight shape do two configurations need to be
so that one can be deformed into the other?”

III. THE CONFIGURATION SPACE OF THE ROD

In this section, we show that each equilibrium configura-
tion of a Kirchhoff elastic rod [4] corresponds to a unique
point in R6. We also provide a computational test to deter-
mine if an equilibrium configuration is stable. The results
in this section originally appeared in Bretl and McCarthy
[2]. In their work, stable equilibrium configurations of a
Kirchhoff elastic rod were formulated as local solutions of
an optimal control problem on the Lie group SE(3). We
forgo describing this optimal control formulation and instead
work directly with the differential equations that result from
analyzing the optimal control problem.
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We will assume, without loss of generality, that the rod
has unit length. We will also assume that the rod is straight
in the undeformed configuration. Using t ∈ [0, 1] to denote
arc-length along the rod, the position and orientation of the
rod at arc-length t are described by an element q(t) of the
special Euclidean group SE(3). Thus, the shape of the rod
is described by a continuous map q : [0, 1]→ SE(3). In the
Kirchhoff elastic rod model, the rod is allowed to twist and
bend, but is unshearable and inextensible [4]. Therefore, the
map q : [0, 1]→ SE(3) must satisfy

dq

dt
= q (u1X1 + u2X2 + u3X3 +X4) (1)

for some u : [0, 1]→ R3, where

X1 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
X2 =

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
X3 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
X4 =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
X5 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
X6 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
is a basis for se(3), the Lie algebra of SE(3). The function
u1 : [0, 1] → R is the twisting strain and the functions u2
and u3 : [0, 1]→ R are the bending strains along the rod.

Each end of the rod is held by a robotic gripper. We will
assume, without loss of generality, that the base of the rod
is held fixed at q(0) = e, where e is the identity element of
SE(3). This provides the initial condition for the differential
equation (1). The gripper holding the rod at t = 1 is free to
move in SE(3). We now must find functions u : [0, 1]→ R3

that produce equilibrium configurations of the rod.
Define the set A ⊂ R6 by

A = {a ∈ R6 : (a2, a3, a5, a6) 6= (0, 0, 0, 0)} (2)

The set A is simply R6 with a two-dimensional plane
removed. Each point in A corresponds to an equilibrium
configuration of the rod. This fact is proven in Theorem 5
of Bretl and McCarthy [2], and for path planning, A serves
as the configuration space of the rod. We now outline the
procedure for mapping points in A to rod configurations.

Given a ∈ A, solve the six ordinary differential equations

dµ1

dt
=
µ3µ2

c3
− µ2µ3

c2

dµ4

dt
=
µ3µ5

c3
− µ2µ6

c2
dµ2

dt
= µ6 +

µ1µ3

c1
− µ3µ1

c3

dµ5

dt
=
µ1µ6

c1
− µ3µ4

c3
dµ3

dt
= −µ5 +

µ2µ1

c2
− µ1µ2

c1

dµ6

dt
=
µ2µ4

c2
− µ1µ5

c1

(3)

on the interval t ∈ [0, 1] with the initial condition µ(0) = a,
where c1 > 0 is the torsional stiffness of the rod and c2 >
0 and c3 > 0 are the bending stiffnesses of the rod. The
resulting function µ : [0, 1] → R6 can be interpreted as the
vector of internal forces and torques along the rod [2].

Next, define u : [0, 1]→ R3 by

ui = µi/ci for i = 1, 2, 3 (4)

Solving (1) with this choice of u produces an equilibrium
shape of the rod. We denote an equilibrium configuration by

the pair of functions (q, u). Each (q, u) and the correspond-
ing µ are completely defined by the choice of a ∈ A. Denote
the resulting maps by (q, u) = Ψ(a) and µ = Γ(a), and
define C = Ψ(A). In Theorem 5 of Bretl and McCarthy [2],
it is shown that the map Ψ is injective, i.e. for each (q, u) ∈ C
there exists a unique a ∈ A such that (q, u) = Ψ(a).

Next, we need to determine which equilibrium configu-
rations of the rod, i.e. which a ∈ A, correspond to stable
equilibrium configurations. Suppose (q, u) = Ψ(a) and µ =
Γ(a) for some a ∈ A. For w ∈ R6, define the matrices

G = diag(c−11 , c−12 , c−13 , 0, 0, 0)

F(w) =


0 c32w3 c32w2 0 0 0

c13w3 0 c13w1 0 0 1
c21w2 c21w1 0 0 −1 0

0 −c−1
2 w6 c−1

3 w5 0 c−1
3 w3 −c−1

2 w2

c−1
1 w6 0 −c−1

3 w4 −c−1
3 w3 0 c−1

1 w1

−c−1
1 w5 c−1

2 w4 0 c−1
2 w2 −c−1

1 w1 0



H(w) =


0 c−1

3 w3 −c−1
2 w2 0 0 0

−c−1
3 w3 0 c−1

1 w1 0 0 0

c−1
2 w2 −c−1

1 w1 0 0 0 0

0 0 0 0 c−1
3 w3 −c−1

2 w2

0 0 1 −c−1
3 w3 0 c−1

1 w1

0 −1 0 c−1
2 w2 −c−1

1 w1 0


where cij = c−1i − c−1j for i, j = 1, 2, 3. Now solve the
linear, arc-length-varying matrix differential equations

dM
dt

= F(µ(t))M
dJ
dt

= GM + H(µ(t))J (5)

with initial conditions M(0) = I and J(0) = 0. Then,
(q, u) is a stable equilibrium configuration if and only if
det(J(t)) 6= 0 for all t ∈ (0, 1]. This result is proven in
Theorem 7 of Bretl and McCarthy [2]. The matrix functions
M and J are both completely determined by the choice of
a ∈ A. Define this map by (M, J) = Λ(a). A point t ∈ (0, 1]
at which det(J(t)) = 0 is called a conjugate point. When we
refer to conjugate points along the equilibrium configuration
(q, u) = Ψ(a), we mean arc-lengths t ∈ (0, 1] at which
det(J(t)) = 0, where (M, J) = Λ(a).

We can now determine which equilibrium configurations
of the rod are stable. Denote the set of all a ∈ A that
correspond to stable equilibrium configurations by Astable,
and let Cstable = Ψ(Astable). Also, define the map Φ : C →
SE(3) by (q, u) 7→ q(1). Given a path of the rod in Cstable,
the function Φ can be used to find the path of the robotic
gripper that causes the rod to follow the path in Cstable.

Finally, we define Afree ⊂ Astable to be the set of all a ∈
A that correspond to stable equilibrium configurations of
the rod that do not contain self-intersections. If there are no
obstacles in the workspace of the rod, then we may think
of A as the rod’s configuration space and Afree as the free
configuration space. Given two points a and a′ ∈ Afree, we
would like to find a continuous path α : [0, 1] → Afree such
that α(0) = a and α(1) = a′. The corresponding path of
the rod is then given by Ψ ◦ α, and the path of the robotic
gripper that causes the desired motion of the rod is Φ◦Ψ◦α.

One approach for constructing this path is to use a
sampling-based planning algorithm [5]. The analysis we
have done so far, however, does not guarantee that such
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a path exists. Furthermore, when using this sampling-based
approach, the matrix differential equations in (5) must be
solved, the determinant of J(t) must be computed for all
t ∈ (0, 1], and a collision checking algorithm must be
evaluated at each point along the path in A. This must be
done to ensure the path remains in Afree. In Section V, we
will construct a path in Afree using an arbitrary path in A
that connects the starting and goal configurations of the rod.

IV. SCALE INVARIANCE OF THE GOVERNING
DIFFERENTIAL EQUATIONS

We will now establish a property of the differential equa-
tions (1), (3), and (5) known as scale invariance [3]. This
property leads to scaling relationships between solutions of
(1), (3), and (5). These scaling relationships will be used in
Section V to show that Afree is path-connected.

Suppose a ∈ Afree. Let

µ = Γ(a) (q, u) = Ψ(a) (M, J) = Λ(a)

Thus q solves (1), µ solves (3), and M and J solve (5) with
the initial conditions q(0) = e, µ(0) = a, M(0) = I , and
J(0) = 0, and u is defined by (4). Next, let L ∈ (0, 1], and
define the map SL : R6 → R6 by

SL(w) =
[
Lw1 Lw2 Lw3 L2w4 L2w5 L2w6

]T
(6)

for all w ∈ R6. Now let

ν = Γ(SL(a)) (p, v) = Ψ(SL(a)) (N,K) = Λ(SL(a))

We have scaled the point a using SL and evaluated the rod’s
configuration at this scaled value.

Now define the matrices DL, ML, and JL by

DL = diag(1, 1, 1, L)

ML = diag(L,L,L, L2, L2, L2)

JL = diag(1, 1, 1, L−1, L−1, L−1)

We claim that the following relations hold:

ν(t) = SL(µ(Lt)) (7)

v(t) = Lu(Lt) (8)

p(t) = DLq(Lt)D
−1
L (9)

N(t) = MLM(Lt)M−1L K(t) = JLJ(Lt)M−1L (10)

Equations (7)-(10) relate the configurations a and SL(a) of
the rod through scaling relationships. Computations verifying
these relations are presented in Appendix A.

These scaling relationships have three main implications.
• It is clear from (2) and (6) that since a ∈ A and L ∈

(0, 1], then SL(a) ∈ A as well.
• We claim that SL(a) ∈ Astable, i.e. (p, v) is a stable

equilibrium configuration. From Section III, we know
that (p, v) is a stable equilibrium configuration if and
only if det(K(t)) 6= 0 for all t ∈ (0, 1]. Now note
that both JL and M−1L are nonsingular. Therefore, from
(10), K(t) is singular if and only if J(Lt) is singular.
Since a ∈ Astable, we know that det(J(t)) 6= 0 for all

t ∈ (0, 1]. Finally, since L ∈ (0, 1], det(J(Lt)) 6= 0 for
all t ∈ (0, 1]. Thus det(K(t)) 6= 0 for all t ∈ (0, 1].

• We claim that SL(a) ∈ Afree, i.e. the configuration
(p, v) does not contain self-intersections. Since q and
p are maps taking values in SE(3), we have

q(t) =

[
Rq(t) rq(t)

0 1

]
p(t) =

[
Rp(t) rp(t)

0 1

]
(11)

where Rq(t) and Rp(t) ∈ SO(3), and rq(t) and rp(t) ∈
R3. Since a ∈ Afree, the configuration (q, u) does not
contain self-intersections, i.e. the map rq : [0, 1] → R3

is injective. From (9), rp and rq are related by

rp(t) = rq(Lt)/L (12)

Since L ∈ (0, 1], it is clear that rp is injective.
Therefore, (p, v) does not contain self-intersections.

We have shown that SL(a) ∈ Afree, and this holds for all
L ∈ (0, 1]. This produces a curve in Afree, defined by SL(a)
with L ∈ (0, 1], emanating from the origin in A (but not
including the origin). Along this curve, we no longer need
to perform the computations described at the end of Section
III to ensure that we remain in Afree. These curves will be
used in the next section to show that Afree is path-connected.

V. TOPOLOGICAL PROPERTIES OF THE FREE
CONFIGURATION SPACE

In Section IV, we derived analytical expressions for certain
curves in Afree. We will now show that any two of these
curves can be connected with a third curve in Afree. This
will show that the set Afree is path-connected. We give a
constructive procedure for finding this connecting curve;
however, the procedure requires a numerical computation,
and the curve is not defined in a closed-form expression.

Given a point a ∈ Afree, we have established that SL(a) ∈
Afree for all L ∈ (0, 1]. We show the following two related
facts in Appendices B and C, respectively:
• Given any a ∈ A, there exists L′ ∈ (0, 1] such that
SL(a) ∈ Afree for all L ∈ (0, L′].

• Let α : [0, 1] → A be continuous. For each s ∈ [0, 1],
choose L′(s) such that SL′(s)(α(s)) ∈ Afree (this can
be done using the above fact). Set

L∗ = inf{L′(s) : s ∈ [0, 1]} > 0

Then SL∗(α(s)) ∈ Afree for all s ∈ [0, 1].
Given a path α : [0, 1] → A, we find L∗ by performing

two calculations. First, for each s ∈ [0, 1], compute (M, J) =
Λ(α(s)). Let t′1(s) denote the first conjugate point along
Ψ(α(s)), i.e. the first point t ∈ (0, 1] at which det(J(t)) = 0.
If det(J(t)) 6= 0 for all t ∈ (0, 1], set t′1(s) = 1. Then
let 0 < t1 < inf{t′1(s) : s ∈ [0, 1]}. Next, for each
s ∈ [0, 1], compute (q, u) = Ψ(α(s)) and define rq as
in (11). Choose t′2(s) such that rq(t) is injective for all
t ∈ [0, t′2(s)]. After doing this for each s ∈ [0, 1], let
0 < t2 < inf{t′2(s) : s ∈ [0, 1]}. Finally, choose L∗ =
min{t1, t2}. It is shown in Appendix B that choosing L∗

in this way satisfies SL∗(α(s)) ∈ Afree for all s ∈ [0, 1].
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(a) (b) (c) (d) (e) (f)

Fig. 3: The path of the Kirchhoff elastic rod corresponding to the red path α : [0, 1]→ A in Figs. 4 and 5. Rods 3a and 3f
are stable collision-free configurations. Rods 3b-3e are all unstable configurations, and rod 3d intersects itself.

a1
a2

a3 a

a′

Fig. 4: The configuration space A projected onto the
(a1, a2, a3) axes. The red path corresponds to the rods in
Fig. 3, and the blue and green paths correspond to the rods
in Fig. 6.

We can now prove our main result.
Theorem 1: Afree is path-connected.

Proof: Let a and a′ ∈ Afree, and let α : [0, 1] → A be
a continuous path such that α(0) = a and α(1) = a′. Such a
path exists since A is path-connected. Choose L∗ according
to the above procedure so that SL∗(α(s)) ∈ Afree for all
s ∈ [0, 1]. Now consider the concatenation of the three paths

SL(a) for L ∈ [L∗, 1]

SL∗(α(s)) for s ∈ [0, 1]

SL(a′) for L ∈ [L∗, 1]

(13)

We have shown that these three paths are contained in Afree.
Since SL∗(a) = SL∗(α(0)) and SL∗(a

′) = SL∗(α(1)), these
three paths are continuous. We have found a continuous path
in Afree connecting a and a′. Our result follows.

By composing the path constructed in the proof with the
functions Ψ and Φ, we can find a path of the robotic gripper
that causes the rod to move from Ψ(a) to Ψ(a′) while
remaining in static equilibrium and avoiding self-collisions.

VI. APPLICATIONS TO MANIPULATION
PLANNING FOR DEFORMABLE OBJECTS

In this section, we apply Theorem 1 to a simulated
manipulation problem. Before showing this example, we
note one important fact regarding self-intersections along
the path constructed in Theorem 1. We stated that along
this path, the rod does not intersect itself. This statement
refers to the centerline of the rod. For any physical rod, the

a4

a5

a6

a′
a

Fig. 5: The configuration space A projected onto the
(a4, a5, a6) axes. The red path corresponds to the rods in
Fig. 3, and the blue and green paths correspond to the rods
in Fig. 6.

material comprising the rod will fill some radius δ around
the centerline. Therefore, injectivity of the centerline does
not necessarily guarantee the absence of self-collisions.

We can, however, quantify how close the centerline comes
to a self-collision. Let (q, u) = Ψ(a) for some a ∈ Afree,
define rq as in (11), and let ε > 0. Define δq by

δq = inf{‖rq(t1)− rq(t2)‖ : t1, t2 ∈ [0, 1], |t1 − t2| ≥ ε}

where ‖ · ‖ is the 2-norm. Then δq is the minimum distance
between any two points on the rod (q, u) separated by an
arc-length of at least ε. Now let (p, v) = Ψ(SL(a)) for some
L ∈ (0, 1] and define rp as in (11). Using (12), we have

δp = inf{‖rp(t1)− rp(t2)‖ : t1, t2 ∈ [0, 1], |t1 − t2| ≥ ε}

= inf

{
‖rq(Lt1)− rq(Lt2)‖

L
: t1, t2 ∈ [0, 1], |t1 − t2| ≥ ε

}
≥ L−1 inf {‖rq(t1)− rq(t2)‖ : t1, t2 ∈ [0, 1], |t1 − t2| ≥ ε}
= L−1δq

Therefore, the minimum distance δp between any two
points on the rod (p, v) separated by an arc length of at
least ε satisfies δp ≥ L−1δq . If we assume that the rod (q, u)
does not self-intersect, i.e. δq > δ (recall that δ is the radius
of the rod), then the rod (p, v) does not self-intersect, since
L ∈ (0, 1] and therefore δp ≥ δq > δ.

We now consider the example of manipulating a Kirchhoff
elastic rod from the configuration (q, u) in Fig. 3a to the
configuration (q′, u′) in Fig 3f. Both of these configura-
tions are collision-free stable equilibrium configurations.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6: The path of the Kirchhoff elastic rod corresponding to the blue and green paths in Figs. 4 and 5. Every configuration
along this path is stable and does not contain self-collisions. Therefore, this is a path in the free configuration space. Note
that rods 6a and 6j in this figure are identical to rods 3a and 3f in Fig. 3.

Therefore, there exist unique a and a′ ∈ Afree such that
(q, u) = Ψ(a) and (q′, u′) = Ψ(a′). Before applying the
result from Theorem 1, we will attempt to connect these
two configurations with an arbitrarily chosen path in A.

Fig. 4 shows a projection of the configuration spaceA onto
the (a1, a2, a3) axes, and Fig. 5 shows a projection onto the
(a4, a5, a6) axes. The two points a and a′ are marked in each
figure and are connected by a red path α : [0, 1] → A. The
rod configurations shown in Fig. 3 correspond to points along
this red path. The rod in Fig. 3d contains self-collisions,
and the rods in Figs. 3b-3e are all unstable equilibrium
configurations. Therefore, this path is not contained in Afree.

We now apply Theorem 1 to find a path inAfree connecting
a and a′ using the path α. After performing the computations
described in Section V to determine a suitable value of
L∗, we find that L∗ = 0.3 is sufficiently small, i.e. for
each s ∈ [0, 1], the configuration Ψ(α(s)) does not contain
conjugate points or self-collisions for t ∈ (0, L∗]. The two
curves SL(a) and SL(a′) with L ∈ [L∗, 1] are shown in blue
in Figs. 4 and 5, and the curve SL∗(α(s)) with s ∈ [0, 1] is
shown in green. From the proof of Theorem 1, we know that
the concatenation of these three paths forms a continuous
path in Afree connecting a and a′. The rod configurations
in Fig. 6 correspond to points along this path in Afree. As
expected, all of these configurations are stable equilibrium
configurations and do not contain self-intersections.

VII. CONCLUSIONS AND FUTURE WORK

We proved that the free configuration space of a Kirchhoff
elastic rod is path-connected. This was shown by construct-
ing paths in the free configuration space connecting any two
collision-free stable equilibrium configurations. We applied
these results to the problem of manipulation planning and
found paths of the robotic grippers holding the ends of
the rod that cause the rod to move between two stable
equilibrium configurations while avoiding self-collisions.

Throughout the paper, we have ignored the possibility
of having obstacles in the workspace of the rod, and such
obstacles will often be present in applications. However, our

results may be helpful when trying to find paths of the rod
that do not collide with such obstacles. Suppose we have a
path α : [0, 1] → Afree, where Afree now denotes the set of
all stable equilibrium configurations that do not contain self-
intersections and do not collide with the obstacles in the rod’s
workspace. Then, the two dimensional surface defined by
SL(α(s)) with s ∈ [0, 1] and L ∈ (0, 1] contains only non-
self-intersecting stable equilibrium configurations. Therefore,
when moving along this surface, we only need to check
that configurations do not collide with obstacles in order
to ensure the configurations remain in Afree. Searching on
this surface is computationally inexpensive, but this limits
us to a submanifold of the configuration space. We are then
faced with the problem of deciding when we should leave
this surface and begin searching on a new surface. This may
be similar to the problem of deciding when to release and
regrasp rigid objects during manipulation [6]. We leave the
problem of manipulation with obstacles for future work.

APPENDIX A

In this appendix, we show that the relations (7)-(10) hold.
Let a ∈ A, L ∈ (0, 1], and a′ = SL(a). Since a = µ(0), it
is clear that a′ = ν(0). We claim that ν : [0, 1] → R6 is a
solution of (3). To see this, consider the derivative of ν1.

dν1(t)

dt
=
d(Lµ1(Lt))

dt
= L2 d(µ1(Lt))

d(Lt)

= L2

(
µ3(Lt)µ2(Lt)

c3
− µ2(Lt)µ3(Lt)

c2

)
= L2

(
L−2

ν3(t)ν2(t)

c3
− L−2 ν2(t)ν3(t)

c2

)
=
ν3(t)ν2(t)

c3
− ν2(t)ν3(t)

c2

Similar computations show that νi satisfies (3) for i =
2, 3, 4, 5, 6. Each solution of (3) is completely determined
by its initial condition. Thus, ν = Γ(ν(0)) = Γ(a′).

Next, using (4), we have

vi(t) = c−1i νi(t) = Lc−1i µi(Lt) = Lui(Lt)
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for i = 1, 2, 3. A direct computation shows that

D−1L Xi = XiD
−1
L X4D

−1
L L = D−1L X4

for i = 1, 2, 3. Now consider the derivative of p(t).

dp(t)

dt
= DL

dq(Lt)

dt
D−1L = DL

dq(Lt)

d(Lt)
D−1L L

= DLq(Lt)

(∑3

i=1
ui(Lt)Xi +X4

)
D−1L L

= DLq(Lt)D
−1
L

(∑3

i=1
Lui(Lt)Xi +X4

)
= p(t)

(∑3

i=1
νi(t)Xi +X4

)
Also, we have p(0) = DLq(0)D−1L = DLeD

−1
L = e. Thus,

p and v are the unique solutions of (4) and (1) corresponding
to a′. Therefore, (p, v) = Ψ(a′).

Finally, consider the scaled matrices N and K. Since
M(0) = I and J(0) = 0, it is clear that N(0) = I and
K(0) = 0. A direct computation shows that

LMLF(w)M−1L = F(SL(w))

LJLGM−1L = G
LJLH(w)J−1L = H(SL(w))

for all w ∈ R6. Using ν(t) = SL(µ(Lt)), we have

dN(t)

dt
= ML

dM(Lt)

dt
M−1L = LML

dM(Lt)

d(Lt)
M−1L

= LMLF(µ(Lt))M(Lt)M−1L

= LMLF(µ(Lt))M−1L MLM(Lt)M−1L

= F(SL(µ(Lt)))N(t)

= F(ν(t))N(t)

A similar calculation shows that
dK(t)

dt
= GN(t) + H(ν(t))K(t)

APPENDIX B

In this appendix, we prove the following lemma.
Lemma 1: For any a ∈ A, there exists L′ such that

SL(a) ∈ Afree for all L ∈ (0, L′].
Before proving the lemma, we need to establish some facts

about conjugate points along the configuration Ψ(a).
Lemma 2: Let (M, J) = Λ(a) for some a ∈ A. Then there

exists some ε > 0 such that det(J(t)) 6= 0 for all t ∈ (0, ε],
and the times at which det(J(t)) = 0 are isolated.

Proof: See Proposition 2.2 of Sachkov [7].
We can now prove Lemma 1.

Proof: If a ∈ Afree, then from Section IV we can choose
L′ = 1. Suppose a 6∈ Afree. Then the configuration Ψ(a)
either contains conjugate points on the interval t ∈ (0, 1],
contains self-intersections, or both. We will assume that both
occur, and this will take care of the other two cases.

Let (M, J) = Λ(a). We assumed that there are conju-
gate points in the interval (0, 1], i.e. points t ∈ (0, 1] at
which det(J(t)) = 0. From Lemma 2, we know that these
points are positive and discrete, so there exists a smallest

conjugate point. Denote this first conjugate point by t1. Then
det(J(t)) 6= 0 for all t ∈ (0, t1).

Now let L ∈ (0, t1). Then Lt < t1 for all t ∈ (0, 1].
Thus, det(J(Lt)) 6= 0 for all t ∈ (0, 1]. Let a′ = SL(a) and
(N,K) = Λ(a′). We established in Section IV that K(t) is
singular if and only if J(Lt) is singular. We conclude that
det(K(t)) 6= 0 for all t ∈ (0, 1], and therefore a′ ∈ Astable.

Next, let (q, u) = Ψ(a) and define rq as in (11). We
assumed that the configuration (q, u) contains self-collisions.
Thus, rq is not injective on the interval t ∈ [0, 1]. We claim
that there exists t2 ∈ (0, 1] such that rq is injective on the
interval t ∈ [0, t2]. To see this, recall that q(0) = e and
consider the derivative of q, given by (1), at t = 0.

q̇(0) =


0 −u3 u2 1
u2 0 −u1 0
−u2 u1 0 0

0 0 0 0


Thus ṙq(0) = [1 0 0]T , and there exists some short time
interval [0, t2] along which rq is injective. Now let L ∈
(0, t2), (p, v) = Ψ(SL(a)), and define rp as in (11). From
(12), we see that rp is injective for all t ∈ [0, 1].

Now let 0 < L′ < min{t1, t2}. Then for all L ∈
(0, L′], Ψ(SL(a)) is non-self-intersecting and does not have
conjugate points on the interval t ∈ (0, 1], so SL(a) ∈ Afree.

APPENDIX C
In this appendix, we extend Lemma 1 in Appendix B to

paths in A. First, we need Lemma 3 to place a lower bound
on conjugate times along paths in A.

Lemma 3: If α : [0, 1] → A is continuous, then there
exists t1 > 0 such that the configuration Ψ(α(s)) does not
have conjugate points in the interval (0, t1] for all s ∈ [0, 1].

Proof: See Proposition 2.6 of Sachkov [7].
Lemma 4: Let α : [0, 1] → A be continuous. Then there

exists L∗ > 0 such that SL∗(α(s)) ∈ Afree for all s ∈ [0, 1].
Proof: Choose t1 according to Lemma 3. Then, for each

s ∈ [0, 1], choose t′(s) so that the configuration Ψ(α(s))
does not have self-intersections on the interval (0, t′(s)]. For
each s ∈ [0, 1], if (q, u) = Ψ(α(s)) and rq is defined by (11),
then ṙq(0) = [1 0 0]T , as we saw in the proof of Lemma 1.
We can therefore choose t2 > 0 such that t′(s) > t2 for all
s ∈ [0, 1]. Now let L∗ = min{t1, t2} > 0.
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[6] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, Manipulation
planning with probabilistic roadmaps, IJRR, 23(7-8):729-746, 2004.

[7] Y. Sachkov, Conjugate points in the Euler elastic problem, JDCS,
14(3):409-439, 2008.

2964


