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ABSTRACT

In this thesis, we consider smooth optimal control systems that evolve on

Lie groups. Pontryagin’s maximum principle allows us to search for local

solutions of the optimal control problem by studying an associated

Hamiltonian dynamical system. When the associated Hamiltonian function

possess symmetries, we can often study the Hamiltonian system in a vector

space whose dimension is lower than the original system. We apply these

symmetry reduction techniques to optimal control problems on Lie groups

for which the associated Hamiltonian function is left-invariant under the

action of a subgroup of the Lie group. Necessary conditions for optimality

are derived by applying Lie-Poisson reduction for semidirect products, a

previously developed method of symmetry group reduction in the field of

geometric mechanics. Our main contribution is a reduced sufficient

condition for optimality that relies on the nonexistence of conjugate points.

Coordinate formulae are derived for computing conjugate points in the

reduced Hamiltonian system, and we relate these conjugate points to local

optimality in the original optimal control problem. These optimality

conditions are then applied to an example optimal control problem on the

Lie group SE(3) that exhibits symmetries with respect to SE(2), a

subgroup of SE(3). This optimal control problem can be used to model

either a kinematic airplane, i.e. a rigid body moving at a constant speed

whose angular velocities can be controlled, or a Kirchhoff elastic rod in a

gravitational field.
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CHAPTER 1

INTRODUCTION

The use of differential geometry to study control systems has led to many

insightful results, particularly in the field of optimal control [28]. In this

thesis, we use these geometric techniques to study optimal control problems

whose state evolves on a Lie group. The necessary conditions for optimality

provided by Pontryagin’s maximum principle [26] relate solutions of this

optimal control problem to integral curves of a Hamiltonian vector field.

Thus, finding solutions of a geometric optimal control problem involves

studying a Hamiltonian dynamical system on a smooth manifold. The field

of geometric mechanics provides many techniques for studying such systems.

One of the main tools used in geometric mechanics is reduction, whereby

symmetries of a dynamical system are used to reduce the dimension of the

system [23]. These symmetry group reduction techniques are widely applied

to Hamiltonian systems in classical mechanics [1, 3]. One particular type of

symmetry group reduction is Lie-Poisson reduction, in which a Hamiltonian

system evolves on the cotangent bundle of a Lie group, and the

Hamiltonian function is invariant under either the left or right action of the

Lie group. In this case, the dynamics of the system can be studied by

considering a reduced Hamiltonian system which evolves on the dual Lie

algebra of the Lie group. After this reduction is performed, the stability of

the original system can be studied using tools such as the Energy-Casimir

method or the Energy-Momentum method [22, 27].

In some systems, the Hamiltonian function is not left-invariant under the

action of the entire Lie group, but is invariant under the action of a

subgroup of the Lie group, i.e the symmetry has been broken. This issue

can sometimes be resolved by embedding the problem in a larger semidirect

product space in which the system becomes left-invariant [13, 20, 21]. A

classic example of such a system is the heavy spinning top. Other systems

to which this method has been applied include compressible fluids,

1



magnetohydrodynamics, elasticity, and plasma physics [20].

In optimal control theory, various types of symmetry group reduction

techniques have been applied to the conditions for optimality

[10, 12, 16, 9, 25, 29], including Lie-Poisson reduction for left-invariant

systems [8, 15, 17, 31]. Less focus has been given to applying symmetry

reduction techniques to sufficient conditions for optimality. A reduced test

for conjugate points in left-invariant optimal control problems is given in [8].

1.1 Main Results

We apply semidirect product reduction to the necessary and sufficient

conditions for optimal control problems on Lie groups. After applying

Pontryagin’s maximum principle to the optimal control problem, we assume

that the Hamiltonian function is left-invariant under the action of a

subgroup of the Lie group. Applying Lie-Poisson reduction for semidirect

products to these optimal control problems reduces the associated

Hamiltonain system, which originally evolved on the cotangent bundle of

the Lie group, to the dual Lie algebra of a semidirect product.

Our main contribution is a sufficient condition for optimality which relies

on the nonexistence of conjugate points. We provide coordinate formulae

for computing conjugate points by establishing non-degeneracy of the

exponential map of the reduced Hamiltonian system. We show that the

absence of conjugate points in the reduced system implies local optimality

in the original system. While geometric statements of necessary and

sufficient conditions for optimality (such as those given in Chapter 2) are,

in principle, all we need to find optimal solutions, they do not provide

coordinate formulate for computing solutions. One advantage of working in

the reduced space is that optimal trajectories can be found by solving a

system of ordinary differential equations, and conjugate points can be

computed by solving a system of matrix differential equations.

After stating the necessary and sufficient conditions, we apply them to a

geometric optimal control problem on SE(3) with broken symmetry. This

optimal control problem can be used to model a kinematic airplane [4, 31]

or a Kirchhoff elastic rod [8, 14] in a gravitational field. Without the effects

of gravity, this system is left-invariant under the action of SE(3). However,
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when gravity is included in the analysis, the symmetry is broken and the

system is left-invariant under the action of SE(2), which is a subgroup of

SE(3). While this example focuses on a mechanical system, further

motivation for the work in this thesis comes from the use of symmetries in

quantum optimal control problems, such as the contrast imaging problem

in nuclear magnetic resonance [6].

The work in this thesis extends the results that appeared in a previous

conference paper [7]. In that paper, the necessary and sufficient conditions

described above were stated for matrix Lie groups. In this thesis, these

conditions are stated and proved for general Lie groups. More generally,

this work builds upon the work in [8], in which sufficient conditions are

given for left-invariant geometric optimal control problems.

1.2 Outline of the Thesis

We review the general theory of optimal control on manifolds in Chapter 2.

In Chapter 3, we review the application of Lie-Poisson reduction to

left-invariant optimal control problems on Lie groups. This leads to reduced

necessary and sufficient conditions for optimality. Then, in Chapter 4,

reduction for semidirect products is applied to the necessary conditions for

optimality provided by Pontryagin’s maximum principle. We also derive a

test for conjugate points in the reduced system and relate this test for

optimality to the original system. The applications described above are

treated in Chapter 5, and closing remarks are given in Chapter 6.
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CHAPTER 2

OPTIMAL CONTROL ON MANIFOLDS

In this chapter, we review the framework for characterizing solutions of

geometric optimal control problems. In Section 2.1, we recall some

definitions from differential geometry. Introductory material on smooth

manifolds that is not covered here can be found in any differential geometry

text, e.g. Lee [18]. Using the language developed in Section 2.1, we state a

geometric version of Pontryagin’s maximum principle [26] in Section 2.2.

The maximum principle allows us to search for extrema of an optimal

control problem by analyzing integral curves of a Hamiltonian vector field.

The maximum principle provides necessary conditions for optimality. In

Section 2.3, we state a sufficient condition for optimality based on the

theory of conjugate points. This sufficient condition is a generalization of

Jacobi’s condition in the calculus of variations [11]. Proofs of the necessary

and sufficient conditions we state in this chapter can be found in Agrachev

and Sachkov [2]. In later chapters, we will analyze these necessary and

sufficient conditions for optimality under certain symmetry assumptions on

the optimal control problem.

2.1 Review of Smooth Manifolds

We begin by recalling some notation regarding smooth manifolds. Let M

be a smooth manifold. The set of all smooth real-valued functions on M is

denoted by C∞(M), and the set of all smooth vector fields on M is denoted

by X(M). The action of a tangent vector v ∈ TmM on a function

f ∈ C∞(M) is v · f , and the action of a tangent covector w ∈ T ∗mM on a

tangent vector v ∈ TmM is 〈w, v〉. The action of a vector field X ∈ X(M)

on a function f ∈ C∞(M) produces the function X[f ] ∈ C∞(M) that
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satisfies

X[f ](m) = X(m) · f

for all m ∈M . The Jacobi-Lie bracket of the vector fields X, Y ∈ X(M) is

the vector field [X, Y ] that satisfies

[X, Y ][f ] = X[Y [f ]]− Y [X[f ]]

for all f ∈ C∞(M). If N is a smooth manifold and F : M → N is a smooth

map, then the pushforward of F at m ∈M is the linear map

TmF : TmM → TF (m)N that satisfies

TmF (v) · f = v · (f ◦ F )

for all v ∈ TmM and f ∈ C∞(N). The pullback of F at m ∈M is the dual

map T ∗mF : T ∗F (m)N → T ∗mM that satisfies

〈T ∗mF (w), v〉 = 〈w, TmF (v)〉

for all v ∈ TmM and w ∈ T ∗F (m)N . We say F is degenerate at m ∈M if

there exists non-zero v ∈ TmM such that TmF (v) = 0. It is equivalent that

the Jacobian matrix of any coordinate representation of F at m has zero

determinant. The Poisson bracket generated by the canonical symplectic

form on T ∗M is

{·, ·} : C∞(T ∗M)× C∞(T ∗M)→ C∞(T ∗M)

The co-tangent bundle T ∗M together with the bracket {·, ·} is a Poisson

manifold. The Hamiltonian vector field of H ∈ C∞(T ∗M) is the unique

vector field XH ∈ X(T ∗M) that satisfies

XH [K] = {K,H}

for all K ∈ C∞(T ∗M). Finally, let π : T ∗M →M denote the projection

map π(w,m) = m for all w ∈ T ∗mM .
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2.2 Necessary Conditions for Optimality

We now state necessary conditions for optimal control problems on smooth

manifolds. Assume g : M × U → R and f : M × U → TM are smooth maps

where U ⊂ Rm for some m > 0. Consider the optimal control problem

minimize
q,u

∫ T

0

g(q(t), u(t)) dt

subject to q̇(t) = f(q(t), u(t)) for all t ∈ [0, T ]

q(0) = q0, q(T ) = q1

(2.1)

for some fixed T > 0, where q0 and q1 ∈M and (q, u) : [0, T ]→M × U .

Define the parameterized Hamiltonian function Ĥ : T ∗M × R× U → R by

Ĥ(p, q, k, u) = 〈p, f(q, u)〉 − kg(q, u)

where p ∈ T ∗qM .

Theorem 1 is a geometric statement of Pontryagin’s maximum principle

[26] and provides a set of necessary conditions that all local optima of (2.1)

must satisfy.

Theorem 1. (Necessary Conditions) Suppose (qopt, uopt) : [0, T ]→M × U
is a local optimum of (2.1). Then, there exists k ≥ 0 and an integral curve

(p, q) : [0, T ]→ T ∗M of the time-varying Hamiltonian vector field XH ,

where H : T ∗M × R→ R is given by H(p, q, t) = Ĥ(p, q, k, uopt(t)), that

satisfies q(t) = qopt(t) and

H(p(t), q(t), t) = max
u∈U

Ĥ(p(t), q(t), k, u) (2.2)

for all t ∈ [0, T ]. If k = 0, then p(t) 6= 0 for all t ∈ [0, T ].

Proof. See Theorem 12.10 in [2].

We call the integral curve (p, q) in Theorem 1 an abnormal extremal

when k = 0 and a normal extremal otherwise. When k 6= 0, we may simply

assume k = 1. We call (q, u) abnormal if it is the projection of an abnormal

extremal. We call (q, u) normal if it is the projection of a normal extremal

and it is not abnormal.
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2.3 Sufficient Conditions for Optimality

When the conditions in Theorem 1 are satisfied by a normal (q, u), this

trajectory is an stationary point of the cost function in (2.1). Second order

conditions are needed to ensure (q, u) is indeed a local minimum. Theorem

2 provides sufficient optimality conditions based on the non-existence of

conjugate points.

Theorem 2. (Sufficient Conditions) Suppose (p, q) : [0, T ]→ T ∗M is a

normal extremal of (2.1). Define H ∈ C∞(M) by

H(p, q) = max
u∈U

Ĥ(p(t), q(t), 1, u) (2.3)

assuming the maximum exists and ∂2Ĥ/∂u2 < 0. Define u : [0, T ]→ U so

u(t) is the unique maximizer of (2.3) at (p(t), q(t)). Assume that XH is

complete and that there exists no other integral curve (p′, q′) of XH

satisfying q(t) = q′(t) for all t ∈ [0, T ]. Let ϕ : R× T ∗M → T ∗M be the flow

of XH and define the endpoint map φt : T
∗
q(0)M →M by

φt(w) = π ◦ ϕ(t, w, q(0)). Then (q, u) is a local optimum of (2.1) if and only

if there exists no t ∈ (0, T ] for which φt is degenerate at p(0).

Proof. See Theorem 21.8 in [2].
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CHAPTER 3

LIE-POISSON REDUCTION OF
LEFT-INVARIANT OPTIMAL CONTROL

PROBLEMS

While the necessary and sufficient conditions in Theorems 1 and 2

characterize solutions of the optimal control problem (2.1), it is not clear

yet how to compute the integral curves (p, q) or how to establish

non-degeneracy of the endpoint map φt. Coordinate formulae for

performing these computations are provided in [8] in the case when M is a

Lie group G and the Hamiltonian function (2.2) is left-invariant under the

action of G. In this chapter, we review the results in [8] for finding

solutions of (2.1) when the optimal control problem is left-invariant. We

begin by recalling some facts about Lie Groups in Section 3.1. We then give

reduced statements of the necessary and sufficient conditions for optimality

in Sections 3.2 and 3.3, respectively. Unlike the conditions in Theorems 1

and 2, these reduced conditions can be evaluated by solving a system of

ordinary differential equations.

3.1 Review of Lie Groups

Let G be a Lie group with identity element e ∈ G. Let g = TeG and

g∗ = T ∗eG. For any q ∈ G, define the left translation map Lq : G→ G by

Lq(r) = qr

for all r ∈ G. A function H ∈ C∞(T ∗G) is left-invariant if

H(T ∗r Lq(w), r) = H(w, s) (3.1)
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for all w ∈ T ∗sG and q, r, s ∈ G satisfying s = Lq(r). For any ζ ∈ g, let Xζ

be the vector field that satisfies

Xζ(q) = TeLq(ζ)

for all q ∈ G. Define the Lie bracket [·, ·] : g× g→ g by

[ζ, η] = [Xζ , Xη](e)

for all ζ, η ∈ g. For any ζ ∈ g, the adjoint operator adζ : g→ g satisfies

adζ(η) = [ζ, η]

and the coadjoint operator ad∗ζ : g∗ → g∗ satisfies

〈ad∗ζ(µ), η〉 = 〈µ, adζ(η)〉

for all η ∈ g and µ ∈ g∗. The functional derivative of h ∈ C∞(g∗) at µ ∈ g∗

is the element δh/δµ ∈ g that satisfies

lim
s→0

h(µ+ sδµ)− h(µ)

s
=

〈
δµ,

δh

δµ

〉
for all δµ ∈ g∗.

Let {X1, . . . , Xn} be a basis for g and let {P1, . . . , Pn} be the dual basis

for g∗ that satisfies

〈Pi, Xj〉 = δij

for i, j ∈ {1, . . . , n}, where δij is the Kronecker delta. We write ζi to denote

the ith component of ζ ∈ g with respect to this basis. For i, j ∈ {1, . . . , n},
define the structure constants Ck

ij ∈ R for our choice of basis by

[Xi, Xj] =
n∑
k=1

Ck
ijXk (3.2)

The following two lemmas will be used to prove our main results in

Chapter 4.

Lemma 1. Let q : W → G be a smooth map, where W ⊂ R2 is simply
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connected. Denote its partial derivatives ζ : W → g and η : W → g by

ζ(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂t

)
η(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂ε

) (3.3)

Then
∂ζ

∂ε
− ∂η

∂t
= [ζ, η] (3.4)

Conversely, if there exist smooth maps ζ and η satisfying (3.4), then there

exists a smooth map q satisfying (3.3).

Proof. See Proposition 5.1 in [5].

Lemma 2. Let α, β, γ ∈ g and suppose γ = [α, β]. Then

γk =
n∑
r=1

n∑
s=1

αrβsC
k
rs

Proof. This is obtained from the definition of the structure constants in

(3.2).

3.2 Reduction of the Necessary Conditions

Now we revisit the statement of necessary conditions for the optimal

control problem (2.1) in the case where the smooth manifold M is a Lie

group G and where the Hamiltonian function H is left-invariant under the

action of G. Theorem 1 implies the existence of a particular integral curve

(p, q) in the cotangent bundle T ∗G. The following theorem implies the

existence of a corresponding integral curve µ in the dual Lie algebra g∗.

Theorem 3. (Reduction of Necessary Conditions) Suppose the

time-varying Hamiltonian function H : T ∗G× [0, T ]→ R is both smooth

and left-invariant for all t ∈ [0, T ]. Denote the restriction of H to g∗ by

h = H|g∗×[0,T ]. Given p0 ∈ T ∗q0G, let µ : [0, T ]→ g∗ be the solution of

µ̇ = ad∗δh/δµ(µ) (3.5)
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with initial condition µ(0) = T ∗e Lq0(p0). The integral curve

(p, q) : [0, T ]→ T ∗G of XH with initial condition p(0) = p0 satisfies

p(t) = T ∗q(t)Lq(t)−1(µ(t))

for all t ∈ [0, T ], where q is the solution of

q̇ = Xδh/δµ(q)

with initial condition q(0) = q0.

Proof. See the proof of Theorem 13.4.4 in [23].

Since g∗ is a vector space, the trajectory µ described by (3.5) can be

evaluated by solving a system of ordinary differential equations, as shown in

the following corollary.

Corollary 1. Suppose that H ∈ C∞(T ∗G) satisfies the conditions in

Theorem 3 and that XH is complete. Given q0 ∈ G and p0 ∈ T ∗q0G, let

a ∈ Rn be the coordinate representation of T ∗e Lq0(p0), i.e.

T ∗e Lq0(p0) =
n∑
i=1

aiPi

Solve the ordinary differential equations

µ̇i = −
n∑
j=1

n∑
k=1

Ck
ij

δh

δµj
µk (3.6)

with initial conditions µi(0) = ai for i ∈ {1, . . . , n}. Now let q : [0, 1]→ G

be the solution of

q̇ = Xδh/δµ(q) (3.7)

with initial condition q(0) = q0. Next, define

p(t) = T ∗q(t)Lq(t)−1(µ(t))

for all t ∈ [0, T ]. Then the integral curve of XH with initial conditions

p(0) = p0 and q(0) = q0 is (p, q) : [0, T ]→ T ∗G.
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Proof. Taking µ1(t), . . . , µn(t) as coordinates of µ(t), it is easy to verify

that (see [23])

ad∗δh/δµ(µ) = −
n∑
j=1

n∑
k=1

Ck
ij

δh

δµj
µk (3.8)

We conclude that (3.5) and (3.6) are equivalent.

3.3 Reduction of the Sufficient Conditions

We now revisit the statement of sufficient conditions for the optimal control

problem (2.1). Reduction of these conditions provides coordinate formulae

to test the non-degeneracy of the endpoint map φt defined in Theorem 2.

Theorem 4. (Reduction of Sufficient Conditions) Suppose that

H ∈ C∞(T ∗G) is left-invariant and that XH is complete. Let h = H|g∗ be

the restriction of H to g∗ and let ϕ : R× T ∗G→ T ∗G be the flow of XH .

Give q0 ∈ G, define the endpoint map φt : T
∗
q0
G→ G by

φt(p) = π ◦ ϕ(t, p, q0). Given p0 ∈ T ∗q0G, let a ∈ Rn be the coordinate

representation of T ∗e Lq0(p0), and let µ be the solution of (3.6) with initial

conditions µi(0) = ai for i ∈ {1, . . . , n}. Define the matrices

F, G, H ∈ Rn×n as follows:

[
F
]
ij

= − ∂

∂µj

n∑
r=1

n∑
s=1

Cs
ir

δh

δµr
µs[

G
]
ij

=
∂

∂µj

∂h

∂µi[
H
]
ij

= −
n∑
r=1

δh

δµr
Ci
rj

Solve the (linear, time-varying) matrix differential equations

Ṁ = FM (3.9)

J̇ = GM + HJ (3.10)

with initial conditions M(0) = I and J(0) = 0. The endpoint map φt is

degenerate at p0 if and only if det(J(t)) = 0.

Proof. See the proof of Theorem 4 in [8].
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Corollary 1 and Theorem 4 show that when the Hamiltonian function is

left-invariant under the action of G, the geometric necessary and sufficient

conditions in Theorems 1 and 2 can be evaluated by solving a system of

ordinary differential equations.
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CHAPTER 4

REDUCTION OF OPTIMAL CONTROL
PROBLEMS WITH BROKEN SYMMETRY

In chapter 3, we assumed that the Hamiltonian function provided by the

maximum principle was left-invariant under the action of the Lie Group G.

In this chapter, we consider the case when the Hamiltonian is left-invariant

with respect to a subgroup of G. As was done in Theorem 3, we will show a

correspondence between integral curve (p, q) in the cotangent bundle T ∗G

and curves µ in the dual Lie algebra g∗. As before, these curves can be

computed by solving a system of ordinary differential equations.

Furthermore, we will derive a system of matrix differential equations,

similar to those in (3.9)-(3.10), that can be evaluated to establish

non-degeneracy of the endpoint map φt from Theorem 2.

We begin with a review of semidirect products and Lie group

representations in Section 4.1. Further information on Lie groups and their

representations can be found in Varadarajan [30]. Then, in Sections 4.2 and

4.3, we derive reduced necessary and sufficient conditions for optimality

when the Hamiltonian function is left-invariant with respect to a subgroup

of G.

4.1 Review of Semidirect Products

Let V be a vector space and let ρ : G→ Aut(V ) be a left representation of

G on V , i.e., ρ is a smooth group homomorphism that assigns to each

g ∈ G a linear map ρ(g) : V → V satisfying

ρ(g1g2) = ρ(g1)ρ(g2)
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for all g1, g2 ∈ G. The associated left and right representations of G on V ∗,

denoted ρ∗ and ρ∗, respectively, are

ρ∗(g) =
[
ρ(g−1)

]∗
ρ∗(g) = [ρ(g)]∗ (4.1)

where [ ]∗ denotes the dual transformation. The induced Lie algebra

representation ρ′ : g→ End[V ] of ζ ∈ g satisfies

ρ′(ζ)(v) =
d

dt
[ρ(exp(tζ))(v)] |t=0

for all v ∈ V , where exp: g→ G is the exponential map. Denote by Gχ the

isotropy group of χ ∈ V ∗, i.e.,

Gχ = {g ∈ G|ρ∗(g)χ = χ}

Let S = G×ρ V be the semidirect product of G and V with multiplication

and inversion given by

(g1, v1)(g2, v2) = (g1g2, v1 + ρ(g1)v2)

(g1, v1)
−1 = (g−11 ,−ρ(g−11 )v1)

for all g1, g2 ∈ G and v1, v2 ∈ V . The Lie algebra of S is s = g×ρ′ V with

the Lie bracket

[(ζ1, v1), (ζ2, v2)] = ([ζ1, ζ2], ρ
′(ζ1)v2 − ρ′(ζ2)v1)

for all ζ1, ζ2 ∈ g and v1, v2 ∈ V . The left action of S on T ∗S is given by

T ∗(q,u)(w, s, v, χ) =
(
T ∗qsLq−1(w), Lq(s), u+ ρ(q)v, ρ∗(q)χ

)
(4.2)

for all u, v ∈ V , χ ∈ V ∗, w ∈ T ∗sG, and q, s ∈ G [20].

The following lemma will be used in Section 4.3 to compute conjugate

points in systems with broken symmetry.

Lemma 3. Let q : I → G be a smooth map, where I ⊂ R is connected.

Denote its derivative η : I → g by

η(ε) = Tq(ε)Lq(ε)−1

(
∂q(ε)

∂ε

)
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Then
∂

∂ε
ρ (q(ε)) = ρ (q(ε)) ρ′ (η(ε)) (4.3)

Proof. From the definition of η(ε), we have

∂q(ε)

∂ε
= TeLq(ε) (η(ε))

Now consider the function g : I × R→ G given by

g(ε, s) = Lq(ε)exp (η(ε)s)

It is clear that g(ε, 0) = q(ε). Now observe that

∂

∂s
g(ε, s) =

∂

∂s

(
Lq(ε)exp (η(ε)s)

)
= Texp(η(ε)s)Lq(ε)

(
∂

∂s
exp (η(ε)s)

)
Therefore, at s = 0 we have

∂

∂s
g(ε, s)|s=0 = TeLq(ε)

(
∂

∂s
exp (η(ε)s) |s=0

)
= TeLq(ε) (η(ε))

=
∂q(ε)

∂ε

Since ρ is smooth, we have

ρ (q(ε)) = ρ (g(ε, s)) |s=0

and
∂

∂ε
ρ (q(ε)) =

∂

∂s
ρ (g(ε, s)) |s=0

Therefore
∂

∂ε
ρ (q(ε)) =

∂

∂s
ρ
(
Lq(ε)exp (η(ε)s)

)
|s=0

=
∂

∂s
(ρ (q(ε)) ρ (exp (η(ε)s))) |s=0

= ρ (q(ε))

(
∂

∂s
ρ (exp (η(ε)s)) |s=0

)
= ρ (q(ε)) ρ′ (η(ε))
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We have verified (4.3).

4.2 Reduction of the Necessary Conditions

We now consider the statement of necessary conditions in Theorem 1 in the

case when the Hamiltonian function is left-invariant under the action of a

subgroup of G. In many situations, the Hamiltonian function depends on a

parameter in the dual of some vector space, and the subgroup under which

the Hamiltonian is left-invariant is the isotropy group of this parameter.

An example of this case is a heavy rigid body (i.e. a rigid body that

experiences a constant gravitational force), whose configuration space is

G = SE(3). In this situation, the Hamiltonian of the rigid body is the sum

of its kinetic and potential energy. The kinetic energy term is left-invariant

under the action of SE(3). However, the potential energy term is only

left-invariant under the action of elements in SE(3) that correspond to

rotations about the direction of gravity and translations orthogonal to the

direction of gravity. In this case, the vector space corresponds to the

position of the body in R3, and the parameter on which the Hamiltonian

depends is the linear function that maps the position of the rigid body to

its potential energy.

Theorem 5 provides necessary conditions similar to those in Theorem 3 in

the case described above, i.e. when the Hamiltonian function depends

smoothly on a parameter χ0 ∈ V ∗ and is left-invariant under the action of

Gχ0 on T ∗G (so that (3.1) holds when q ∈ Gχ0). We denote the Hamiltonian

by Hχ0 : T ∗G→ R to note the dependence on χ0 ∈ V ∗. The procedure for

applying Lie-Poisson reduction to such Hamiltonian systems is to consider

the Hamiltonian function H : T ∗S → R defined by H(p, q, v, χ) = Hχ(p, q),

where T ∗S = T ∗G× V × V ∗. Since Hχ(p, q) is independent of the variable

v ∈ V , we ignore the V component of the left action of S on T ∗S and define

H to be constant in the variable v ∈ V [13]. We then show that

H : T ∗S → R is left-invariant under the action of S, i.e. we show that

H(T ∗r Lq(w), r, v, ρ∗(q)χ) = H(w, s, v, χ) (4.4)

for all v ∈ V , χ ∈ V ∗, w ∈ T ∗sG, and q, r, s ∈ G satisfying s = Lq(r). Note
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that if (4.4) holds and q ∈ Gχ0 , then χ0 = ρ∗(q)χ0 and

Hχ0(T
∗
r Lq(w), r) = H(T ∗r Lq(w), r, v, χ0)

= H(T ∗r Lq(w), r, v, ρ∗(q)χ0)

= H(w, s, v, χ0)

= Hχ0(w, s)

for all w ∈ T ∗sG, r, s ∈ G, and q ∈ Gχ0 satisfying s = Lq(r). Therefore (4.4)

implies that Hχ0 is left-invariant under the action of Gχ0 on T ∗G.

If (4.4) holds, then the family of Hamiltonians {Hχ|χ ∈ V ∗} induces a

reduced Hamiltonian h on s∗. As shown in the following theorem, the

existence of an integral curve (µ, χ) in s∗ implies the existence of a

corresponding integral curve (p, q) of XHχ0
in the cotangent bundle T ∗G.

Theorem 5. (Semidirect Product Reduction of Necessary Conditions)

Suppose the time-varying Hamiltonian function Hχ0 : T ∗G× [0, T ]→ R is

smooth, depends smoothly on the parameter χ0 ∈ V ∗, and is left-invariant

under the action of Gχ0 on T ∗G for all t ∈ [0, T ]. In addition, assume that

the Hamiltonian is left-invariant under the action of S when defined as a

function on T ∗S × [0, T ] for all t ∈ [0, T ]. The family of Hamiltonians

{Hχ|χ ∈ V ∗} induces a Hamiltonian function h on s∗ × [0, T ], defined by

h(T ∗e Lq(p), ρ
∗(q)χ, t) = Hχ(p, q, t) (4.5)

Given p0 ∈ T ∗q0G, let (µ, χ) : [0, T ]→ s∗ be the solution of

µ̇ = ad∗δh/δµ(µ)−
(
ρ′δh/δχ

)∗
χ (4.6)

χ̇ = ρ′ (δh/δµ)∗ χ

with initial conditions µ(0) = T ∗e Lq0(p0) and χ(0) = ρ∗(q0)χ0, and where

ρ′δh/δχ : g→ V is given by ρ′δh/δχ(ζ) = ρ′(ζ) δh
δχ

. The integral curve

(p, q) : [0, T ]→ T ∗G of XHχ0
with initial condition p(0) = p0 satisfies

p(t) = T ∗q(t)Lq(t)−1(µ(t))

18



for all t ∈ [0, T ], where q is the solution of

q̇ = Xδh/δµ(q)

with initial condition q(0) = q0. The evolution of χ ∈ V ∗ is given by

χ(t) = ρ∗(q(t))χ0 (4.7)

Proof. See Theorem 3.4 of [20].

As was the case in Theorem 3 and Corollary 1, writing (4.6) in

coordinates allows us to find µ by solving a system of ordinary differential

equations, as shown in the following corollary.

Corollary 2. Suppose that Hχ0 ∈ C∞(T ∗G) satisfies the conditions in

Theorem 5 and that XHχ0
is complete. Let h be the Hamiltonian function

on s∗ induced by the family of Hamiltonians {Hχ|χ ∈ V ∗}. Given q0 ∈ G
and p0 ∈ T ∗q0G, let a ∈ Rn be the coordinate representation of T ∗e Lq0(p0).

Solve the ordinary differential equations

µ̇i = −
n∑
j=1

n∑
k=1

Ck
ij

δh

δµj
µk − χ

(
ρ′ (Xi)

δh

δχ

)
(4.8)

with initial conditions µi(0) = ai for i ∈ {1, . . . , n}, where χ satisfies

χ(t)(v) = χ0 (ρ(q(t))v) (4.9)

for all v ∈ V and q solves

q̇ = Xδh/δµ(q) (4.10)

with initial condition q(0) = q0. Next, define

p(t) = T ∗q(t)Lq(t)−1(µ(t))

for all t ∈ [0, T ]. Then the integral curve of XHχ0
with initial conditions

p(0) = p0 and q(0) = q0 is (p, q) : [0, T ]→ T ∗G.

Proof. First, using (4.1), note that (4.7) and (4.9) are equivalent. Taking
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µ1(t), ..., µn(t) as coordinates of µ(t), we saw in the proof of Corollary 1 that

ad∗δh/δµ(µ) = −
n∑
j=1

n∑
k=1

Ck
ij

δh

δµj
µk (4.11)

From the definition of (ρ′δh/δχ)∗χ ∈ g∗ in Theorem 5, we have that for each

ζ ∈ g,

(ρ′δh/δχ)∗χ (ζ) = χ

(
ρ′(ζ)

δh

δχ

)
(4.12)

Therefore, since {X1, ..., Xn} is a basis for g, the ith component of

(ρ′δh/δχ(ζ))∗χ in terms of the dual basis {P1, ..., Pn} is given by

χ

(
ρ′ (Xi)

δh

δχ

)
(4.13)

Using (4.11)-(4.13), we see that (4.6) and (4.8) are equivalent.

4.3 Reduction of the Sufficient Conditions

In this section, we revisit our statement of sufficient conditions for (2.1) in

the case when the Hamiltonian function satisfies the conditions in Theorem

5. We will lose some of the generality of the previous section by assuming

that the Hamiltonian function has the form

Hχ0(p, q) = K(p, q) + U(χ0, q) (4.14)

This happens when f in (2.1) is independent of χ0 and g in (2.1) has the

form g(q, u) = g1(q, u) + g2(q, χ0), where g1 is independent of χ0. Thus the

symmetry breaking term appears in the cost function. Note that, in this

case, δh/δµ is independent of χ and δh/δχ is independent of µ. (This fact

will be used in the proof of Lemma 4).

Before stating our main result, we begin with two lemmas that describe

the computations needed to establish non-degeneracy of the endpoint map

φt defined in Theorem 2.

Lemma 4. Suppose that Hχ0 ∈ C∞(T ∗G) satisfies the conditions in

Theorem 5, has the form given in (4.14), and that XHχ0
is complete. Let h

be the Hamiltonian function on s∗ induced by the family of Hamiltonians
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{Hχ|χ ∈ V ∗}. Given q0 ∈ G and p0 ∈ T ∗q0G, let a ∈ Rn be the coordinate

representation of T ∗e Lq0(p0). Define the smooth maps µi : [0, T ]× Rn → R
and q : [0, T ]× Rn → G so that µ(t, a) solves (4.8) and q(t, a) solves (4.10)

with initial conditions µi(0, a) = ai and q(0, a) = q0 for i ∈ {1, . . . , n}. Also,

define χ : [0, T ]→ V ∗ by (4.9).

Define the time-varying matrices M and J : [0, T ]→ Rn×n by

[
M(t)

]
ij

=
∂µi(t, a)

∂aj

[
J(t)

]
ij

= ηji (t, a)

where

ηj(t, a) = Tq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂aj

)
Then M satisfies the (linear, time-varying) matrix differential equation

Ṁ = FM− (K+L)J (4.15)

with initial condition M(0) = I, where the time-varying matrices F, K, and

L ∈ Rn×n are defined by

[
F
]
ij

= − ∂

∂µj

n∑
r=1

n∑
s=1

Cs
ir

δh

δµr
µs[

K
]
ij

= χ

(
ρ′(Xj)ρ

′(Xi)
δh

δχ

)
[
L
]
ij

=
n∑
k=1

χ

(
ρ′(Xi)

∂

∂χk

δh

δχ

)
χ
(
ρ′(k)(Xj)

)
where ρ′(k)(Xj) denotes the kth column of the matrix representation of

ρ′(Xj).

Proof. Differentiating (4.8), we find[
Ṁ
]
ij

=
∂

∂t

∂µi
∂aj

=
∂

∂aj

∂µi
∂t

=
∂

∂aj

[(
−

n∑
r=1

n∑
s=1

Cs
ir

δh

δµr
µs

)
− χ

(
ρ′(Xi)

δh

δχ

)]
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Using (4.9) and the fact that δh
δµ

is independent of χ, we have

[
Ṁ
]
ij

=
n∑
k=1

− ∂

∂µk

(
n∑
r=1

n∑
s=1

Cs
ir

δh

δµr
µs

)
∂µk
∂aj
− ∂

∂aj
χ

(
ρ′(Xi)

δh

δχ

)
=

n∑
k=1

[
F
]
ik

[
M
]
kj
− ∂

∂aj

(
χ0

(
ρ(q(t))ρ′(Xi)

δh

δχ

))

Since χ0 is a constant linear function on V , we can rewrite the second term

in the last equation as

χ0

((
∂

∂aj
ρ(q(t))

)
ρ′(Xi)

δh

δχ

)
+ χ0

(
ρ(q(t))ρ′(Xi)

(
∂

∂aj

δh

δχ

))
Now using Lemma 3, we have

∂

∂aj
ρ(q(t)) = ρ(q(t))ρ′(η(t))

= ρ(q(t))

(
n∑
k=1

ρ′(Xk)η
j
k(t, a)

)

Thus

χ0

((
∂

∂aj
ρ(q(t))

)
ρ′(Xi)

δh

δχ

)
= χ0

(
ρ(q(t))

(
n∑
k=1

ρ′(Xk)η
j
k(t, a)

)
ρ′(Xi)

δh

δχ

)

= χ

(
n∑
k=1

ρ′(Xk)ρ
′(Xi)

δh

δχ
ηjk(t, a)

)

=
n∑
k=1

χ

(
ρ′(Xk)ρ

′(Xi)
δh

δχ

)
ηjk(t, a)

=
n∑
k=1

[
K
]
ik

[
J
]
kj

where, in the second to last equality, we have used the fact that χ is linear.

Next, since δh
δχ

is independent of µ, we have

∂

∂aj

δh

δχ
=

n∑
k=1

(
∂

∂χk

δh

δχ

)
∂χk
∂aj
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We have already shown that

∂

∂aj
χ(v) =

n∑
k=1

χ(ρ′(Xk)v)ηjk(t, a)

for any v ∈ V . With ρ′(i)(Xk) denoting the ith column of ρ′(Xk), the ith

component of ∂χ/∂aj is

∂χi
∂aj

=
n∑
k=1

χ
(
ρ′(i)(Xk)

)
ηjk(t, a)

We now have

χ0

(
ρ(q(t))ρ′(Xi)

(
∂

∂aj

δh

δχ

))
= χ0

(
ρ(q(t))ρ′(Xi)

(
n∑
k=1

(
∂

∂χk

δh

δχ

)
∂χk
∂aj

))

=
n∑
k=1

χ

(
ρ′(Xi)

∂

∂χk

δh

δχ

)
∂χk
∂aj

=
n∑
k=1

χ

(
ρ′(Xi)

∂

∂χk

δh

δχ

) n∑
r=1

χ
(
ρ′(k)(Xr)

)
ηjr(t, a)

=
n∑
r=1

(
n∑
k=1

χ

(
ρ′(Xi)

∂

∂χk

δh

δχ

)
χ
(
ρ′(k)(Xr)

))
ηjr(t, a)

=
n∑
r=1

[
L
]
ir

[
J
]
rj

Combining these computations, we see that

[
Ṁ
]
ij

=
n∑
k=1

[
F
]
ik

[
M
]
kj
−

n∑
k=1

([
K
]
ik

+
[
L
]
ik

) [
J
]
kj

It is clear that
[
M(0)

]
ij

= δij, so we have verified (4.15).

Lemma 5. Suppose that the assumptions in Lemma 4 hold, and define the

matrix functions M and J as in Lemma 4. Then J satisfies the (linear,

time-varying) matrix differential equation

J̇ = GM + HJ (4.16)
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with initial condition J(0) = 0, where the time-varying matrices G and

H ∈ Rn×n are defined by [
G
]
ij

=
∂

∂µj

δh

δµi[
H
]
ij

= −
n∑
r=1

δh

δµr
Ci
rj

Proof. Define

ζ(t, a) = Tq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂t

)
From Lemma 1, Theorem 5, and Lemma 4, we have

η̇j =
∂ζ

∂aj
− [ζ, ηj] =

∂

∂aj

δh

δµ
−
[
δh

δµ
, ηj
]

This equation can be written in coordinates by using Lemma 2.[
J̇
]
ij

= η̇ji

=
n∑
k=1

(
∂

∂µk

δh

δµi

)
∂µk
∂aj

+
n∑
k=1

(
−

n∑
r=1

δh

δµr
Ci
rk

)
ηjk

=
n∑
k=1

[
G
]
ik

[
M
]
kj

+
n∑
k=1

[
H
]
ik

[
J
]
kj

It is clear that
[
J(0)

]
ij

= 0, so we have verified (4.16).

We can now state our main result.

Theorem 6. (Semidirect Product Reduction of Sufficient Conditions)

Suppose that Hχ0 ∈ C∞(T ∗G) satisfies the conditions in Theorem 5, has the

form given in (4.14), and that XHχ0
is complete. Let h be the Hamiltonian

function on s∗ induced by the family of Hamiltonians {Hχ|χ ∈ V ∗} and let

ϕ : R× T ∗G→ T ∗G be the flow of XHχ0
. Given q0 ∈ G, define the endpoint

map φt : T
∗
q0
G→ G by φt(p) = π ◦ ϕ(t, p, q0). Given p0 ∈ T ∗q0G, let a ∈ Rn be

the coordinate representation of T ∗e Lq0(p0), and let µ be the solution of

(4.8) with initial conditions µi(0) = ai for i ∈ {1, . . . , n}. Solve the matrix

differential equations in Lemmas 4 and 5 to find the matrix function

J : [0, T ]→ R6×6 The endpoint map φt is degenerate at p0 if and only if

det(J(t)) = 0 for some t ∈ (0, T ].
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Proof. Define the smooth map σ : Rn → T ∗q0G by

σ(a) = T ∗q0Lq−1
0

(
n∑
i=1

aiPi

)

This expression also defines σ : Rn → Tp0(T
∗
q0
G) if we identify T ∗q0G with

Tp0(T
∗
q0
G) in the usual way. Given p0 = σ(a) for some a ∈ Rn, there exists

non-zero λ ∈ Tp0(T ∗q0G) satisfying Tp0φt(λ) = 0 if and only if there exists

non-zero s ∈ Rn satisfying Tσ(a)φt(σ(s)) = 0. Define the smooth map

q : [0, T ]× Rn → G by q(t, a) = φt ◦ σ(a). Noting that

∂q(t, a)

∂aj
= Tσ(a)φt

(
T ∗q0Lq−1

0
(Pj)

)
for j ∈ {1, ..., n}, we have

Tσ(a)φt(σ(s)) =
n∑
j=1

sj
∂q(t, a)

∂aj

By left translation, Tσ(a)φt(σ(s)) = 0 if and only if

0 =
n∑
j=1

sjTq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂aj

)
(4.17)

For each j ∈ {1, ..., n}, let

ηj(t, a) = Tq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂aj

)
We have defined J : [0, T ]→ Rn×n so that J(t) has entries[

J
]
ij

= ηji (t, a) (4.18)

i.e. the j th column of J(t) is the coordinate representation of ηj(t, a) with

respect to {X1, ..., Xn}. Then, (4.17) holds for some s 6= 0 if and only if

det(J(t)) = 0. Therefore φt is degenerate at p0 if and only if

det(J(t)) = 0.

As was the case in Chapter 3, non-degeneracy of the endpoint map φt can

be established by solving the matrix differential equations (4.15) and (4.16).
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CHAPTER 5

APPLICATION TO AN OPTIMAL
CONTROL PROBLEM ON SE(3)

In this chapter, we apply the tools developed in Chapter 4 to an optimal

control problem on the Lie group SE(3). We use Theorems 5 and 6 to

derive ordinary differential equations that characterize the local solutions of

this optimal control problem.

5.1 The Kinematic Airplane and the Heavy Kirchhoff

Elastic Rod

In this section, we consider a geometric optimal control problem that can

be used to model two different systems. First consider a kinematic airplane

that flies at a constant speed [4, 31]. Three control inputs are used to yaw,

pitch and roll the aircraft. The position and orientation of the airplane at

time t is described by an element of the Lie group SE(3), which has the Lie

algebra se(3) and dual Lie algebra se∗(3). Consider the basis {X1, ...X6} of

se(3) given by

X1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 X2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 X3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



X4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 X5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 X6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


If the aircraft flies forward at a constant unit speed for time T , the

trajectory of the aircraft is given by a continuous map q : [0, T ]→ SE(3)
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which satisfies

q̇ = q (u1X1 + u2X2 + u3X3 +X4)

for all t ∈ [0, T ], where u : [0, T ]→ U = R3 is the control input. In [31], the

problem of finding a trajectory connecting two given points in SE(3) and

locally minimizing the sum of the squared control inputs was considered.

Using this cost function, the resulting Hamiltonian function is left-invariant.

We consider a similar cost function, however we add a term which accounts

for gravity. Thus, we now want to find a trajectory that minimizes a

combination of the sum of the squared control inputs and the vertical

height of the aircraft. Therefore, we consider the optimal control problem

minimize
q,u

∫ T

0

(
1

2

3∑
i=1

ciu
2
i +Wχ0(d(q))

)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = q0 q(T ) = q1

(5.1)

for some fixed q0 and q1 ∈ SE(3) and T > 0, where c1, c2, and c3 are

constants, W is the weight of the aircraft, χT0 = [ḡ 0]T ∈ R4 (ḡT ∈ R3 is a

unit vector pointing in the opposite direction of gravity), and

d : SE(3)→ R4 maps the 4× 4 matrix q ∈ SE(3) to the last column of q,

i.e.

d

([
R b

0 1

])
=

[
b

1

]
where R ∈ SO(3) and b ∈ R3. If gravity points in the downward direction,

we choose χ0 = [0 0 1 0]. In the notation from Chapter 4, we have chosen

G = SE(3) and V = R4. The gravity term breaks the SE(3) symmetry,

and the methods used in [31] cannot be applied. However, this problem fits

into the framework in Chapter 4, and Theorems 5 and 6 can be used to find

optimal trajectories.

This same optimal control problem models equilibrium configurations of

a Kirchhoff elastic rod under the force of gravity. Here T is the length of

the rod, c1 is the torsional stiffness, c2 and c3 are the bending stiffnesses,

and W is the weight of the rod per unit length. An analysis of a Kirchhoff

rod without the effect of gravity is performed in [8], in which Theorems 3

and 4 from this paper are applied to (5.1) (with the gravity term neglected)
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to derive necessary and sufficient conditions for a configuration of the rod

to be a local minimimum of the elastic potential energy.

5.2 Necessary Conditions for Optimality

We now analyze (5.1) using the tools developed in this thesis. Applying

Theorem 1 gives that normal (q, u) correspond to integral curves of the

Hamiltonian vector field XHχ0
, where Hχ0 is defined by

Ĥχ0(p, q, k, u) = 〈p, q(u1X1 + u2X2 + u3X3 +X4)〉

− k
(c1

2
u21 +

c2
2
u22 +

c3
2
u23 +Wχ0(d(q))

)
and

Hχ0(p(t), q(t), t) = max
u

Ĥχ0(p(t), q(t), 1, u)

This maximum is achieved when

ui = c−1i 〈p, qXi〉

for i ∈ {1, 2, 3}. This is indeed a maximum since

∂2Ĥ

∂u2
= −diag(c1, c2, c3) < 0

The maximized Hamiltonian function is then

Hχ0(p, q) =
1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ0(d(q))

Extending Hχ0 to be a function on T ∗SE(3)× V × V ∗ gives

H(p, q, v, χ) =
1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ(d(q))
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Now for any v ∈ V , χ ∈ V ∗, p ∈ T ∗q SE(3), and g, q, r ∈ SE(3) satisfying

q = gr we have

H(T ∗r Lg(p), r, v, ρ
∗(g)χ)

=
1

2

3∑
i=1

c−1i 〈T ∗r Lg(p), g−1qXi〉2

+ 〈T ∗r Lg(p), g−1qX4〉 −Wρ∗(g)χ(d(g−1q))

=
1

2

3∑
i=1

c−1i 〈p, gg−1qXi〉2

+ 〈p, gg−1qX4〉 −Wχ(gg−1d(q))

=
1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ(d(q))

=H(p, q, v, χ)

So H is left-invariant under the action of S. This implies that Hχ0 is

left-invariant under the action of Gχ0 , which simply means that Hχ0 is

left-invariant under translations orthogonal to the gravity vector and

rotations around the gravity vector. As a consequence, we can apply

Theorem 3. The reduced Hamiltonian on s∗ is given by

h(µ, χ) =
1

2

3∑
i=1

c−1i µ2
i + µ4 −Wχ4

where χ4 is the fourth entry of χ. To see this, observe that

h(T ∗e Lq(p), ρ(q)∗χ) =
1

2

3∑
i=1

c−1i 〈T ∗e Lq(p), Xi〉2

+ 〈T ∗e Lq(p), X4〉 −Wρ(q)∗χ(d(e))

=
1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ(d(q))

= H(p, q, v, χ)
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so (4.5) is satisfied. Applying (4.8) gives

µ̇1 = u3µ2 − u2µ3 µ̇4 = u3µ5 − u2µ6 +Wχ1

µ̇2 = µ6 + u1µ3 − u3µ1 µ̇5 = u1µ6 − u3µ4 +Wχ2

µ̇3 = −µ5 + u2µ1 − u1µ2 µ̇6 = u2µ4 − u1µ5 +Wχ3

where ui = c−1i µi. Treating χ(t) as a row vector, (4.9) gives

χ(t)T = q(t)TχT0

Carrying out this computation, we wee that χ(t) gives the direction of the

gravity vector rotated into the local coordinate frame at q(t). Also, χ4(t)

gives the vertical position component of q(t). This explains why the

reduced Hamiltonian h only depends on the fourth component of χ.

5.3 Sufficient Conditions for Optimality

Solutions of (5.1) are obtained by finding an initial value of µ(0) (which,

from Corollary 2, is equivalent to finding a ∈ R6) which places q(T ) at q1.

This can be done using a numerical shooting method. Such solutions are

only guaranteed to be extrema of (5.1). The analysis in [8] shows that

(q, u) is abnormal if and only if u2 = u3 = 0, and that µ ∈ g∗ (and hence

p ∈ T ∗SE(3)) is uniquely determined by (q, u). It is also clear that XHχ0
is

complete. Therefore, if u2 6= 0 and u3 6= 0, we may apply Theorem 6 to

determine which extrema are actually local minima.

Computing the matrices F,G,H,K, and L (and defining

cij = (c−1i − c−1j )) gives

F =



0 c32µ3 c32µ2 0 0 0

c13µ3 0 c13µ1 0 0 1

c21µ2 c21µ1 0 0 −1 0

0 −c−12 µ6 c−13 µ5 0 c−13 µ3 −c−12 µ2

c−11 µ6 0 −c−13 µ4 −c−13 µ3 0 c−11 µ1

−c−11 µ5 c−12 µ4 0 c−12 µ2 −c−11 µ1 0


G = diag(c−11 , c−12 , c−13 , 0, 0, 0)
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H =



0 c−13 µ3 −c−12 µ2 0 0 0

−c−13 µ3 0 c−11 µ1 0 0 0

c−12 µ2 −c−11 µ1 0 0 0 0

0 0 0 0 c−13 µ3 −c−12 µ2

0 0 1 −c−13 µ3 0 c−11 µ1

0 −1 0 c−12 µ2 −c−11 µ1 0



K =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 Wχ3 −Wχ2 0 0 0

−Wχ3 0 Wχ1 0 0 0

Wχ2 −Wχ1 0 0 0 0


L = 0

After using a shooting method to find a ∈ R6 which places q(T ) at q1,

(4.15) and (4.16) can be solved numerically with the initial conditions

M(0) = I and J(0) = 0. If det(J(t)) = 0 for some t ∈ (0, T ], then the

solution corresponding to this choice of a ∈ R6 is not a local minimum of

(5.1). Note from (4.18) that J(T ) provides the gradients of q(T ) with

respect to a ∈ R6. These gradients can be used to improve the convergence

of the shooting method described above.
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CHAPTER 6

CONCLUSIONS

We have applied tools from Lie-Poisson reduction for semidirect products

to geometric optimal control problems with broken symmetry. After

deriving reduced necessary conditions for optimality, we provided a

sufficient test for optimality based on conjugate points in the reduced

system. While the general necessary and sufficient conditions in Chapter 2

were stated in terms of coordinate-free geometric results, the reduced

necessary and sufficient conditions were stated in terms of coordinate

formulae and rely on solutions of ordinary differential equations, which can

be solved numerically. These results were then applied to a geometric

optimal control problem which can be used to model either a kinematic

airplane or a Kirchhoff elastic rod in a gravitational field.

Semidirect product reduction is a special case of a more general reduction

procedure known as reduction by stages [24]. The results in this thesis

could be extended by considering these more general approaches to

symmetry group reduction. Furthermore, reduction for systems defined on

the semidirect product of a Lie group and multiple vector spaces has

previously been studied [19]. In this thesis, we only considered Hamiltonian

systems that depend on one parameter from such a vector space. A

Hamiltonian function that depends on two or more parameters may not

possess a non-trivial symmetry group. However, the reduction procedure

used in this thesis may lead to coordinate formulae for finding optimal

solutions for these asymmetric systems.
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