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Abstract— We consider an optimal control problem defined
on a Lie group whose associated Hamiltonian function is left-
invariant under the action of a subgroup of the Lie group.
Necessary conditions for optimality are derived using Lie-
Poisson reduction for semidirect products, which allows us to
study the Hamiltonian system in a space of lower dimension.
Our main contribution is a reduced sufficient condition for
optimality that relies on the nonexistence of conjugate points.
We derive coordinate formulae for computing conjugate points
in the reduced Hamiltonian system, and we relate these conju-
gate points to local optimality in the original optimal control
problem. These conditions are applied to an optimal control
problem that can be used to model either a kinematic airplane
or a Kirchhoff elastic rod in a gravitational field.

I. INTRODUCTION

Consider an optimal control problem whose state evolves
on a smooth manifold. The necessary conditions for optimal-
ity provided by Pontryagin’s maximum principle [1] relate
solutions of this optimal control problem to integral curves of
a Hamiltonian vector field. When the associated Hamiltonian
function has certain symmetry properties, tools from Poisson
geometry can be used to study the Hamiltonian system in
a space of reduced dimension [2]. These symmetry group
reduction techniques are widely applied to Hamiltonian sys-
tems in classical mechanics [3].

When the Hamiltonian system evolves on the cotangent
bundle of a Lie group and the Hamiltonian function is
invariant under the left action of the Lie group, Lie-Poisson
reduction can be applied. The dynamics of the system can
then be studied by considering a reduced Hamiltonian system
which evolves on the dual Lie algebra of the Lie group. Lie-
Poisson reduction has been used to derive reduced necessary
conditions for left-invariant optimal control problems [4], [5],
[6], [7]. Less focus has been given to applying symmetry
reduction techniques to sufficient conditions for optimality.
A reduced test for conjugate points in left-invariant optimal
control problems is given in [4].

In some systems, the Hamiltonian function is not left-
invariant under the action of the entire Lie group, but is in-
variant under the action of a subgroup of the Lie group. This
issue can sometimes be resolved by embedding the problem
in a larger semidirect product space in which the system
becomes left-invariant [8], [9], [10]. A classic example of
such a system is the heavy spinning top. Other systems to
which this method has been applied include compressible
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fluids, magnetohydrodynamics, elasticity, and plasma physics
[9]. In this paper, we apply semidirect product reduction to
necessary and sufficient conditions for optimal control prob-
lems on Lie groups. After applying Pontryagin’s maximum
principle to the optimal control problem, we assume that the
Hamiltonian function is left-invariant under the action of a
subgroup of the Lie group. Applying Lie-Poisson reduction
for semidirect products to these optimal control problems
reduces the associated Hamiltonain system, which originally
evolved on the cotangent bundle of the Lie group, to the dual
Lie algebra of a semidirect product.

Our main contribution is a sufficient condition for optimal-
ity which relies on the nonexistence of conjugate points. We
provide coordinate formulae for computing conjugate points
by establishing non-degeneracy of the exponential map of
the reduced Hamiltonian system. We show that the absence
of conjugate points in the reduced system implies local
optimality in the original system. While geometric statements
of necessary and sufficient conditions for optimality (such as
those stated in Section II) are, in principle, all we need to find
optimal solutions, they do not provide coordinate formulate
for computing solutions. One advantage of working in the
reduced space is that optimal trajectories can be found by
solving a system of ordinary differential equations, and
conjugate points can be computed by solving a system of
matrix differential equations. After stating the necessary and
sufficient conditions, we apply them to a geometric optimal
control problem on SE(3) with broken symmetry. This
optimal control problem can be used to model a kinematic
airplane [11], [12] or a Kirchhoff elastic rod [4], [13] in a
gravitational field.

We review the general theory of optimal control on mani-
folds in Section II. In Section III, Lie-Poisson reduction for
semidirect products is applied to the necessary conditions
for optimality provided by Pontryagin’s maximum principle.
In Section IV, we derive a test for conjugate points in the
reduced system and relate this test for optimality to the
original system. The applications described above are treated
in Section V, and closing remarks are given in Section VI.

II. GEOMETRIC OPTIMAL CONTROL

In this section, we review the framework for characterizing
solutions of geometric optimal control problems. We begin
by recalling a few facts about smooth manifolds. Let M
be a smooth manifold, C∞(M) be the set of all smooth
real-valued functions on M , and X(M) be the set of all
smooth vector fields on M . Denote the action of a tangent
vector v ∈ TmM on a function f ∈ C∞(M) by v · f and
the action of a tangent covector w ∈ T ∗mM on a tangent
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vector v ∈ TmM by 〈w, v〉. The action of a vector field
X ∈ X(M) on a function f ∈ C∞(M) produces the function
X[f ] ∈ C∞(M) that satisfies

X[f ](m) = X(m) · f

for all m ∈ M . The Jacobi-Lie bracket of the vector fields
X,Y ∈ X(M) is the vector field [X,Y ] that satisfies

[X,Y ][f ] = X[Y [f ]]− Y [X[f ]]

for all f ∈ C∞(M). If N is a smooth manifold and
F : M → N is a smooth map, then the pushforward and
pullback of F at m ∈ M are the maps TmF : TmM →
TF (m)N and T ∗mF : T ∗F (m)N → T ∗mM , respectively, that
satisfiy

TmF (v) · f = v · (f ◦ F ), 〈T ∗mF (w), v〉 = 〈w, TmF (v)〉

for all v ∈ TmM , w ∈ T ∗F (m)N and f ∈ C∞(N). We say F
is degenerate at m ∈ M if there exists non-zero v ∈ TmM
such that TmF (v) = 0. It is equivalent that the Jacobian
matrix of any coordinate representation of F at m has zero
determinant. The Poisson bracket generated by the canonical
symplectic form on T ∗M is

{·, ·} : C∞(T ∗M)× C∞(T ∗M)→ C∞(T ∗M)

The Hamiltonian vector field of H ∈ C∞(T ∗M) is the
unique vector field XH ∈ X(T ∗M) that satisfies

XH [K] = {K,H}

for all K ∈ C∞(T ∗M). We use π : T ∗M → M to denote
the projection map π(w,m) = m for all w ∈ T ∗mM .

We now state necessary and sufficient conditions for
optimal control problems on smooth manifolds. Assume
g : M × U → R and f : M × U → TM are smooth maps
where U ⊂ Rm for some m > 0. Consider the optimal
control problem

minimize
q,u

∫ T

0

g(q(t), u(t)) dt

subject to q̇(t) = f(q(t), u(t)) for all t ∈ [0, T ]

q(0) = q0, q(T ) = q1

(1)

for some fixed T > 0, where q0 and q1 ∈ M and (q, u) :
[0, T ] → M × U . Define the parameterized Hamiltonian
function Ĥ : T ∗M × R× U → R by

Ĥ(p, q, k, u) = 〈p, f(q, u)〉 − kg(q, u)

where p ∈ T ∗qM . The following theorem is a geometric
statement of Pontryagin’s maximum principle [1].

Theorem 1: (Necessary Conditions) Suppose (qopt, uopt) :
[0, T ] → M × U is a local optimum of (1). Then, there
exists k ≥ 0 and an integral curve (p, q) : [0, T ] → T ∗M
of the time-varying Hamiltonian vector field XH , where H :
T ∗M ×R→ R is given by H(p, q, t) = Ĥ(p, q, k, uopt(t)),
that satisfies q(t) = qopt(t) and

H(p(t), q(t), t) = max
u∈U

Ĥ(p(t), q(t), k, u) (2)

for all t ∈ [0, T ]. If k = 0, then p(t) 6= 0 for all t ∈ [0, T ].
Proof: See Theorem 12.10 in [14].

We call the integral curve (p, q) in Theorem 1 an abnormal
extremal when k = 0 and a normal extremal otherwise.
When k 6= 0, we may simply assume k = 1. We call (q, u)
abnormal if it is the projection of an abnormal extremal. We
call (q, u) normal if it is the projection of a normal extremal
and it is not abnormal.

Theorem 2: (Sufficient Conditions) Suppose (p, q) :
[0, T ] → T ∗M is a normal extremal of (1). Define H ∈
C∞(M) by

H(p, q) = max
u∈U

Ĥ(p(t), q(t), 1, u) (3)

assuming the maximum exists and ∂2Ĥ/∂u2 < 0. Define
u : [0, T ] → U so u(t) is the unique maximizer of (3)
at (p(t), q(t)). Assume that XH is complete and that there
exists no other integral curve (p′, q′) of XH satisfying q(t) =
q′(t) for all t ∈ [0, T ]. Let ϕ : R × T ∗M → T ∗M be the
flow of XH and define the endpoint map φt : T ∗q(0)M →M
by φt(w) = π◦ϕ(t, w, q(0)). Then (q, u) is a local optimum
of (1) if and only if there exists no t ∈ (0, T ] for which φt
is degenerate at p(0).

Proof: See Theorem 21.8 in [14].

III. LIE GROUPS, SEMIDIRECT PRODUCTS, AND
REDUCTION OF NECESSARY CONDITIONS

While the geometric statements of necessary and sufficient
conditions in Theorems 1 and 2 are, in principle, all we need
to find solutions of the optimal control problem (1), it is not
clear yet how to compute the integral curves (p, q) or how to
establish non-degeneracy of the endpoint map φt. Coordinate
formulae for performing these computations are provided in
[4] in the case when M is a Lie group G and the Hamiltonian
function (2) is left-invariant under the action of G. In this
section, we consider the case when the Hamiltonian is left-
invariant with respect to a subgroup of G. We then apply
Lie-Poisson reduction for semidirect products (Theorem 3.4
in [9]) to the necessary conditions given by Theorem 1.

We begin by recalling some notation for Lie groups and
semidirect products. Let G be a Lie group with identity
element e ∈ G. Let g = TeG and g∗ = T ∗eG. For any
q ∈ G, define the left translation map Lq : G→ G by

Lq(r) = qr

for all r ∈ G. A function H ∈ C∞(T ∗G) is left-invariant if

H(T ∗r Lq(w), r) = H(w, s) (4)

for all w ∈ T ∗sG and q, r, s ∈ G satisfying s = Lq(r). For
any ζ ∈ g, let Xζ be the vector field that satisfies

Xζ(q) = TeLq(ζ)

for all q ∈ G. Define the Lie bracket [·, ·] : g× g→ g by

[ζ, η] = [Xζ , Xη](e)
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for all ζ, η ∈ g. For any ζ ∈ g, the adjoint operator adζ :
g→ g and the coadjoint operator ad∗ζ : g∗ → g∗ satisfy

adζ(η) = [ζ, η] 〈ad∗ζ(µ), η〉 = 〈µ, adζ(η)〉

for all η ∈ g and µ ∈ g∗. The functional derivative of h ∈
C∞(g∗) at µ ∈ g∗ is the element δh/δµ ∈ g that satisfies

lim
s→0

h(µ+ sδµ)− h(µ)

s
=

〈
δµ,

δh

δµ

〉
for all δµ ∈ g∗. Let {X1, ..., Xn} be a basis for g and let
{P1, ..., Pn} be the dual basis for g∗ that satisfies

〈Pi, Xj〉 = δij

for i, j ∈ {1, ..., n}, where δij is the Kronecker delta. We
write ζi to denote the ith component of ζ ∈ g with respect to
this basis. For i, j ∈ {1, ..., n}, define the structure constants
Ckij ∈ R for our choice of basis by

[Xi, Xj ] =
n∑
k=1

CkijXk (5)

Now let V be a vector space and let ρ : G→ Aut(V ) be
a left representation of G on V , i.e., ρ is a smooth group
homomorphism that assigns to each g ∈ G a linear map
ρ(g) : V → V satisfying

ρ(g1g2) = ρ(g1)ρ(g2)

for all g1, g2 ∈ G. The associated left and right representa-
tions of G on V ∗, denoted ρ∗ and ρ∗, respectively, are

ρ∗(g) =
[
ρ(g−1)

]∗
ρ∗(g) = [ρ(g)]

∗

where [ ]∗ denotes the dual transformation. The induced Lie
algebra representation ρ′ : g→ End[V ] of ζ ∈ g satisfies

ρ′(ζ)(v) =
d

dt
[ρ(exp(tζ))(v)] |t=0

for all v ∈ V , where exp : g → G is the exponential map.
Denote by Gχ the isotropy group of χ ∈ V ∗, i.e.,

Gχ = {g ∈ G|ρ∗(g)χ = χ}

Let S = G×ρ V be the semidirect product of G and V with
multiplication and inversion given by

(g1, v1)(g2, v2) = (g1g2, v1 + ρ(g1)v2)

(g1, v1)−1 = (g−11 ,−ρ(g−11 )v1)

for all g1, g2 ∈ G and v1, v2 ∈ V . The Lie algebra of S is
s = g×ρ′ V with the Lie bracket

[(ζ1, v1), (ζ2, v2)] = ([ζ1, ζ2], ρ′(ζ1)v2 − ρ′(ζ2)v1)

for all ζ1, ζ2 ∈ g and v1, v2 ∈ V . The left action of S on
T ∗S is given by

T ∗(q,u)(w, s, v, χ) =
(
T ∗qsLq−1(w), qs, u+ ρ(q)v, ρ∗(q)χ

)
for all u, v ∈ V , χ ∈ V ∗, w ∈ T ∗sG, and q, s ∈ G [9].

We now revisit the statement of necessary conditions
in Theorem 1 in the case when the Hamiltonian function

(2) depends smoothly on a parameter χ0 ∈ V ∗ and is
left-invariant under the action of Gχ0 on T ∗G, i.e., (4)
holds when q ∈ Gχ0 . We denote the Hamiltonian by
Hχ0

: T ∗G → R to note the dependence on χ0 ∈ V ∗.
The procedure for applying Lie-Poisson reduction to such
Hamiltonian systems is to consider the Hamiltonian function
H : T ∗S → R defined by H(p, q, v, χ) = Hχ(p, q), where
T ∗S = T ∗G×V ×V ∗. Since Hχ(p, q) is independent of the
variable v ∈ V , we ignore the V component of the left action
of S on T ∗S and define H to be constant in the variable V
[8]. We then show that H : T ∗S → R is left-invariant under
the action of S, i.e. we show that

H(T ∗r Lq(w), r, v, ρ∗(q)χ) = H(w, s, v, χ) (6)

for all v ∈ V , χ ∈ V ∗, w ∈ T ∗sG, and q, r, s ∈ G satisfying
s = Lq(r). Note that if (6) holds and q ∈ Gχ0

, then χ0 =
ρ∗(q)χ0 (since Gχ0

is a subgroup) and

Hχ0(T ∗r Lq(w), r) = H(T ∗r Lq(w), r, v, χ0)

= H(T ∗r Lq(w), r, v, ρ∗(q)χ0)

= H(w, s, v, χ0)

= Hχ0(w, s)

for all w ∈ T ∗sG, r, s ∈ G, and q ∈ Gχ0
satisfying s =

Lq(r). Therefore (6) implies that Hχ0
is left-invariant under

the action of Gχ0
on T ∗G.

If (6) holds, then the family of Hamiltonians {Hχ|χ ∈
V ∗} induces a reduced Hamiltonian h on s∗, and the exis-
tence of an integral curve (µ, χ) in s∗ implies the existence
of a corresponding integral curve (p, q) of XHχ0

in the
cotangent bundle T ∗G. This result is important because s∗

is a vector space and so (µ, χ) can be readily computed by
solving a system of ordinary differential equations.

Theorem 3: (Semidirect Product Reduction of Necessary
Conditions) Suppose the smooth time-varying Hamiltonian
function Hχ0

: T ∗G × [0, T ] → R depends smoothly on
the parameter χ0 ∈ V ∗ and is left-invariant under the action
of Gχ0

on T ∗G for all t ∈ [0, T ]. In addition, assume that
the Hamiltonian is left-invariant under the action of S when
defined as a function on T ∗S × [0, T ] for all t ∈ [0, T ]. The
family of Hamiltonians {Hχ|χ ∈ V ∗} induces a Hamiltonian
function h on s∗ × [0, T ], defined by

h(T ∗e Lq(p), ρ
∗(q)χ, t) = Hχ(p, q, t) (7)

Given p0 ∈ T ∗q0G, let (µ, χ) : [0, T ]→ s∗ be the solution of

µ̇ = ad∗δh/δµ(µ)− (ρ′δh/δχ)∗χ (8)

χ̇ = ρ′(δh/δµ)∗χ

with initial conditions µ(0) = T ∗e Lq0(p0) and χ(0) =
ρ∗(q0)χ0, and where ρ′δh/δχ : g → V is given by
ρ′δh/δχ(ζ) = ρ′(ζ) δhδχ . The integral curve (p, q) : [0, T ] →
T ∗G of XHχ0

with initial condition p(0) = p0 satisfies

p(t) = T ∗q(t)Lq(t)−1(µ(t))

for all t ∈ [0, T ], where q is the solution of

q̇ = Xδh/δµ(q)
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with initial condition q(0) = q0. The evolution of χ ∈ V ∗ is
given by

χ(t) = ρ∗(q(t))χ0 (9)
Proof: See Theorem 3.4 of [9].

IV. SEMIDIRECT PRODUCT REDUCTION OF
SUFFICIENT CONDITIONS

In this section, we revisit our statement of sufficient
conditions for (1) in the case when the Hamiltonian in (2)
satisfies the conditions in Theorem 3. We will lose some
of the generality of the previous section and now restrict
ourselves to dealing only with matrix Lie groups. Assume
that the vector space V is Euclidean space with dimension
such that multiplication qv is well defined for all matrices
q ∈ G and vectors v ∈ V , and let the representation
ρ : G→ Aut(V ) be defined by ρ(q)(v) = qv. We will denote
the actions of G and g on V and V ∗ by concatenation. We
will also assume that the Hamiltonian in (2) has the form

Hχ0
(p, q) = K(p, q) + U(χ0, q) (10)

This happens when f in (1) is independent of χ0 and g
has the form g(q, u) = g1(q, u) + g2(q, χ0), where g1
is independent of χ0. Thus the symmetry breaking term
appears in the cost function. Note that, in this case, δh/δµ
is independent of χ and δh/δχ is independent of µ. (This
fact will be used in the proof of Theorem 4). We begin with
two lemmas that will be required to show our main result.

Lemma 1: Let q : U → G be a smooth map, where U ⊂
R2 is simply connected. Denote its partial derivatives ζ :
U → g and η : U → g by

ζ(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂t

)
η(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂ε

) (11)

Then
∂ζ

∂ε
− ∂η

∂t
= [ζ, η] (12)

Conversely, if there exist smooth maps ζ and η satisfying
(12), then there exists a smooth map q satisfying (11).

Proof: See Proposition 5.1 in [15].
Lemma 2: Let α, β, γ ∈ g and suppose γ = [α, β]. Then

γk =

n∑
r=1

n∑
s=1

αrβsC
k
rs

Proof: This is obtained from the definition in (5).
Theorem 4 provides coordinate formulae to test the non-

degeneracy of the endpoint map φt that was defined geo-
metrically in Theorem 2. These formulae can be evaluated
by solving a system of linear, time-varying matrix differen-
tial equations, something that is easy to do using modern
numerical methods.

Theorem 4: (Semidirect Product Reduction of Sufficient
Conditions) Suppose that Hχ0

∈ C∞(T ∗G) satisfies the
conditions in Theorem 3, has the form given in (10), and
that XHχ0

is complete. Let h be the Hamiltonian function
on s∗ induced by the family of Hamiltonians {Hχ|χ ∈ V ∗}

and let ϕ : R × T ∗G → T ∗G be the flow of XHχ0
. Given

q0 ∈ G, define the endpoint map φt : T ∗q0G → G by
φt(p) = π ◦ ϕ(t, p, q0). Given p0 ∈ T ∗q0G, let a ∈ Rn be
the coordinate representation of T ∗e Lq0(p0), i.e.

T ∗e Lq0(p0) =

n∑
i=1

aiPi

Solve the ordinary differential equations

µ̇i = −
n∑
j=1

n∑
k=1

Ckij
δh

δµj
µk − χ

(
Xi

δh

δχ

)
(13)

with initial conditions µi(0) = ai for i ∈ {1, ..., n}, and
where χ satisfies

χ(t)(v) = χ0 (φt(p0)v) (14)

for all v ∈ V . Define the time-varying matrices F,G,H,K,
and L ∈ Rn×n by[

F
]
ij

= − ∂

∂µj

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs,

[
G
]
ij

=
∂

∂µj

δh

δµi
,

[
H
]
ij

= −
n∑
r=1

δh

δµr
Cirj ,

[
K
]
ij

= χ

(
XjXi

δh

δχ

)
,

[
L
]
ij

=

n∑
k=1

χ

(
Xi

∂

∂χk

δh

δχ

)
χ
(
X

(k)
j

)
where X(k)

j denotes the kth column of the matrix Xj . Solve
the (linear, time-varying) matrix differential equations

Ṁ = FM− (K+L)J J̇ = GM + HJ (15)

with initial conditions M(0) = I and J(0) = 0. The endpoint
map φt is degenerate at p0 if and only if det(J(t)) = 0 for
some t ∈ (0, T ].

Proof: Define the smooth map σ : Rn → T ∗q0G by

σ(a) = T ∗q0Lq−1
0

(
n∑
i=1

aiPi

)
This same expression defines σ : Rn → Tp0(T ∗q0G) if we
identify T ∗q0G with Tp0(T ∗q0G) in the usual way. Given p0 =
σ(a) for some a ∈ Rn, there exists non-zero λ ∈ Tp0(T ∗q0G)
satisfying Tp0φt(λ) = 0 if and only if there exists non-zero
s ∈ Rn satisfying Tσ(a)φt(σ(s)) = 0. Define the smooth
map q : [0, T ]×Rn → G by q(t, a) = φt ◦σ(a). Noting that

∂q(t, a)

∂aj
= Tσ(a)φt

(
T ∗q0Lq−1

0
(Pj)

)
for j ∈ {1, ..., n}, we have

Tσ(a)φt(σ(s)) =

n∑
j=1

sj
∂q(t, a)

∂aj

By left translation, Tσ(a)φt(σ(s)) = 0 if and only if

0 =

n∑
j=1

sjTq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂aj

)
(16)
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For each j ∈ {1, ..., n}, let

ηj(t, a) = Tq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂aj

)
(17)

Define J : [0, T ]→ Rn×n so that J(t) has entries[
J
]
ij

= ηji (t, a) (18)

i.e. the jth column of J(t) is the coordinate representation of
ηj(t, a) with respect to {X1, ..., Xn}. Then, (16) holds for
some s 6= 0 if and only if det(J(t)) = 0. Therefore φt is
degenerate at p0 if and only if det(J(t)) = 0.

It remains to show that J(t) can be computed as described
in the theorem. Taking µ1(t), ..., µn(t) as coordinates of
µ(t), it is easy to verify that (see [2])

ad∗δh/δµ(µ) = −
n∑
j=1

n∑
k=1

Ckij
δh

δµj
µk (19)

We also have that (ρ′δh/δχ)∗χ ∈ g∗ and for each ζ ∈ g

(ρ′δh/δχ)∗χ (ζ) = χ

(
ρ′(ζ)

δh

δχ

)
= χ

(
ζ
δh

δχ

)
(20)

Therefore, since {X1, ..., Xn} is a basis for g, the ith

component of (ρ′δh/δχ(ζ))∗χ in terms of the dual basis
{P1, ..., Pn} is given by

χ

(
Xi

δh

δχ

)
(21)

Using (19)-(21), we see that (8) and (13) are equivalent.
Also, noting that φt(p0) = q(t), we see that (9) and (14)
are equivalent. We extend each coordinate function to µi :
[0, T ]×Rn → R, so µi(t, a) solves (13) with initial condition
µi(0, a) = ai. Define M : [0, T ]→ Rn×n by[

M(t)
]
ij

=
∂µi
∂aj

The computations performed in Appendix 1 show that
[M(t)]ij can be computed by solving[

Ṁ
]
ij

=

n∑
k=1

[
F
]
ik

[
M
]
kj
−

n∑
k=1

([
K
]
ik

+
[
L
]
ik

) [
J
]
kj

It is clear that
[
M(0)

]
ij

= δij , so we have verified the first
equation in (15). Next, define

ζ(t, a) = Tq(t,a)Lq(t,a)−1

(
∂q(t, a)

∂t

)
We have

η̇j =
∂ζ

∂aj
− [ζ, ηj ] =

∂

∂aj

δh

δµ
−
[
δh

δµ
, ηj
]

from Lemma 1 and Theorem 3. We write this equation in
coordinates by application of Lemma 2.[

J̇
]
ij

= η̇ji

=

n∑
k=1

(
∂

∂µk

δh

δµi

)
∂µk
∂aj

+

n∑
k=1

(
−

n∑
r=1

δh

δµr
Cirk

)
ηjk

=

n∑
k=1

[
G
]
ik

[
M
]
kj

+

n∑
k=1

[
H
]
ik

[
J
]
kj

It is clear that
[
J(0)

]
ij

= 0, so we have verified (15).

V. THE KINEMATIC AIRPLANE AND THE HEAVY
KIRCHHOFF ELASTIC ROD

In this section, we consider a geometric optimal control
problem which can be used to model two different systems.
First consider a kinematic airplane that flies at a constant
speed [11], [12]. Three control inputs are used to yaw, pitch
and roll the aircraft. The position and orientation of the
airplane at time t is described by an element of the Lie group
SE(3), which has the Lie algebra se(3) and dual Lie algebra
se∗(3). Consider the basis {X1, ...X6} of se(3) given by

X1 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
X2 =

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
X3 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
X4 =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
X5 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
X6 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
If the aircraft flies forward at a constant unit speed for time
T , the trajectory of the aircraft is given by a continuous map
q : [0, T ]→ SE(3) which satisfies

q̇ = q (u1X1 + u2X2 + u3X3 +X4)

for all t ∈ [0, T ], where u : [0, T ]→ U = R3 is the control
input. In [12], the problem of finding a trajectory connecting
two given points in SE(3) and locally minimizing the sum
of the squared control inputs was considered. Using this cost
function, the resulting Hamiltonian function is left-invariant.
We consider a similar cost function, however we add a term
which accounts for gravity. Thus, we now want to find a
trajectory that minimizes a combination of the sum of the
squared control inputs and the vertical height of the aircraft.
Therefore, we consider the optimal control problem

minimize
q,u

∫ T

0

(
1

2

3∑
i=1

ciu
2
i +Wχ0(d(q))

)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = q0 q(T ) = q1

(22)

for some q0 and q1 ∈ SE(3) and T > 0, where c1, c2,
and c3 are constants, W is the weight of the aircraft, χT0 =
[ḡ 0]T ∈ R4 (ḡT ∈ R3 is a unit vector pointing in the
opposite direction of gravity), and d : SE(3) → R4 maps
the 4 × 4 matrix q ∈ SE(3) to the last column of q, i.e.,
[R b
0 1 ] 7→ [ b1 ], where R ∈ SO(3) and b ∈ R3. If gravity

points in the downward direction, we choose χ0 = [0 0 1 0].
In the notation from Section 3, we have chosen G = SE(3)
and V = R4. The gravity term breaks the SE(3) symmetry,
and the methods used in [12] cannot be applied. However,
this problem fits into the framework in Sections 3 and 4, and
Theorems 3 and 4 can be used to find optimal trajectories.

This same optimal control problem models equilibrium
configurations of a Kirchhoff elastic rod under the force of
gravity. Here T is the length of the rod, c1 is the torsional
stiffness, c2 and c3 are the bending stiffnesses, and W is
the weight of the rod per unit length. An analysis of a
Kirchhoff rod without the effect of gravity is performed in
[4], in which Theorems 1 and 2 from this paper are applied
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to (22) (with the gravity term neglected) to derive necessary
and sufficient conditions for a configuration of the rod to be
a local minimimum of the elastic potential energy.

We will now analyze (22) using the tools developed in
this paper. Applying Theorem 1 gives that normal (q, u)
correspond to integral curves of the Hamiltonian vector field
XHχ0

, where Hχ0 is defined by

Ĥχ0(p, q, k, u) = 〈p, q(u1X1 + u2X2 + u3X3 +X4)〉

− k
(c1

2
u21 +

c2
2
u22 +

c3
2
u23 +Wχ0(d(q))

)
and

Hχ0(p(t), q(t), t) = max
u

Ĥχ0(p(t), q(t), 1, u)

This maximum is achieved when

ui = c−1i 〈p, qXi〉

for i ∈ {1, 2, 3}. This is indeed a maximum since
∂2Ĥ/∂u2 = −diag(c1, c2, c3) < 0. The maximized Hamil-
tonian function is then

Hχ0
(p, q) =

1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ0(d(q))

Extending Hχ0
to be a function on T ∗SE(3)×V ×V ∗ gives

H(p, q, v, χ) =
1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ(d(q))

Now for any v ∈ V , χ ∈ V ∗, p ∈ T ∗q SE(3), and g, q, r ∈
SE(3) satisfying q = gr we have

H(T ∗r Lg(p), r, v, ρ
∗(g)χ)

=
1

2

3∑
i=1

c−1i 〈T
∗
r Lg(p), g

−1qXi〉2

+ 〈T ∗r Lg(p), g−1qX4〉 −Wρ∗(g)χ(d(g−1q))

=
1

2

3∑
i=1

c−1i 〈p, gg
−1qXi〉2

+ 〈p, gg−1qX4〉 −Wχ(gg−1d(q))

=
1

2

3∑
i=1

c−1i 〈p, qXi〉2 + 〈p, qX4〉 −Wχ(d(q))

=H(p, q, v, χ)

So H is left-invariant under the action of S. This implies that
Hχ0 is left-invariant under the action of Gχ0 , which simply
means that Hχ0

is left-invariant under translations orthogonal
to the gravity vector and rotations around the gravity vector.
As a consequence, we can apply Theorem 3. The reduced
Hamiltonian on s∗ is given by

h(µ, χ) =
1

2

3∑
i=1

c−1i µ2
i + µ4 −Wχ4

Applying (13) gives

µ̇1 = u3µ2 − u2µ3 µ̇4 = u3µ5 − u2µ6 +Wχ1

µ̇2 = µ6 + u1µ3 − u3µ1 µ̇5 = u1µ6 − u3µ4 +Wχ2

µ̇3 = −µ5 + u2µ1 − u1µ2 µ̇6 = u2µ4 − u1µ5 +Wχ3

where ui = c−1i µi. Treating χ(t) as a row vector, (14) gives

χ(t)T = q(t)TχT0

Solutions of (22) are obtained by finding an initial value of
µ (which, from Theorem 4, is equivalent to finding a ∈ R6)
which places q(T ) at q1. This can be done using a numerical
shooting method. Such solutions are only guaranteed to be
extrema of (22). It can be shown that (q, u) is abnormal if
and only if u2 = u3 = 0, and that µ ∈ g∗ (and hence p ∈
T ∗SE(3)) is uniquely determined by (q, u). It is also clear
that XHχ0

is complete. Therefore, if u2 6= 0 and u3 6= 0,
we may apply Theorem 4 to determine which extrema are
actually local minima. Computing the matrices F,G,H,K,
and L (and defining cij = (c−1i − c

−1
j )) gives

F =


0 c32µ3 c32µ2 0 0 0

c13µ3 0 c13µ1 0 0 1
c21µ2 c21µ1 0 0 −1 0

0 −c−1
2 µ6 c−1

3 µ5 0 c−1
3 µ3 −c−1

2 µ2

c−1
1 µ6 0 −c−1

3 µ4 −c−1
3 µ3 0 c−1

1 µ1

−c−1
1 µ5 c−1

2 µ4 0 c−1
2 µ2 −c−1

1 µ1 0


G = diag(c−11 , c−12 , c−13 , 0, 0, 0)

H =


0 c−1

3 µ3 −c−1
2 µ2 0 0 0

−c−1
3 µ3 0 c−1

1 µ1 0 0 0

c−1
2 µ2 −c−1

1 µ1 0 0 0 0

0 0 0 0 c−1
3 µ3 −c−1

2 µ2

0 0 1 −c−1
3 µ3 0 c−1

1 µ1

0 −1 0 c−1
2 µ2 −c−1

1 µ1 0


K =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 Wχ3 −Wχ2 0 0 0

−Wχ3 0 Wχ1 0 0 0
Wχ2 −Wχ1 0 0 0 0

 L = 0

After using a shooting method to find a ∈ R6 which places
q(T ) at q1, (15) can be solved numerically with the initial
conditions M(0) = I and J(0) = 0. If det(J(t)) = 0 for some
t ∈ (0, T ], then the solution corresponding to this choice of
a ∈ R6 is not a local minimum of (22). Note from (18) that
J(T ) provides the gradients of q(T ) with respect to a ∈ R6.
These gradients can be used to improve the convergence of
the shooting method described above.

VI. CONCLUSIONS
We have applied tools from Lie-Poisson reduction for

semidirect products to geometric optimal control problems
with broken symmetry. After deriving reduced necessary
conditions for optimality, we provided a sufficient test for
optimality based on conjugate points in the reduced system.
While the general necessary and sufficient conditions in
Section II are stated in terms of coordinate-free geomet-
ric results, the reduced necessary and sufficient conditions
are stated in terms of coordinate formulae and rely on
solutions of ordinary differential equations, which can be
solved numerically. These results were then applied to a
geometric optimal control problem which can be used to
model either a kinematic airplane or a Kirchhoff elastic rod
in a gravitational field. Semidirect product reduction is a
special case of a more general reduction procedure known
as reduction by stages [16]. The results in this paper could
be extended by considering these more general approaches
to symmetry group reduction.
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APPENDIX 1
In this appendix, we show how to compute [M(t)]ij .

Differentiating (13), we find[
Ṁ
]
ij

=
∂

∂t

∂µi
∂aj

=
∂

∂aj

∂µi
∂t

=
∂

∂aj

[(
−

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

)
− χ

(
Xi

δh

δχ

)]
Using (14), the equivalence of φt(p0) and q(t), and the fact
that δh

δµ is independent of χ, we have

[
Ṁ
]
ij

=

n∑
k=1

− ∂

∂µk

(
n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

)
∂µk
∂aj

− ∂

∂aj
χ

(
Xi

δh

δχ

)
=

n∑
k=1

[
F
]
ik

[
M
]
kj
− ∂

∂aj

(
χ0

(
q(t)Xi

δh

δχ

)) (23)

Since χ0 is a constant linear function on V , we can rewrite
the second term in the last equation as

χ0

((
∂

∂aj
q(t)

)
Xi

δh

δχ

)
+ χ0

(
q(t)Xi

(
∂

∂aj

δh

δχ

))
(24)

Now using (17), we have

∂

∂aj
q(t) = q(t)

(
n∑
k=1

Xkη
j
k(t, a)

)
(25)

Thus
χ0

((
∂

∂aj
q(t)

)
Xi

δh

δχ

)
= χ0

(
q(t)

(
n∑
k=1

Xkη
j
k(t, a)

)
Xi

δh

δχ

)

= χ

(
n∑
k=1

XkXi
δh

δχ
ηjk(t, a)

)

=

n∑
k=1

χ

(
XkXi

δh

δχ

)
ηjk(t, a)

=

n∑
k=1

[
K
]
ik

[
J
]
kj

(26)

where, in the second to last equality, we have used the fact
that χ is linear. Next, since δh

δχ is independent of µ, we have

∂

∂aj

δh

δχ
=

n∑
k=1

(
∂

∂χk

δh

δχ

)
∂χk
∂aj

From (23)-(26), we have already shown that

∂

∂aj
χ(v) =

n∑
k=1

χ(Xkv)ηjk(t, a)

for any v ∈ V . With X
(i)
k denoting the ith column of Xk,

the ith component of ∂χ/∂aj is

∂χi
∂aj

=

n∑
k=1

χ
(
X

(i)
k

)
ηjk(t, a)

We now have

χ0

(
q(t)Xi

(
∂

∂aj

δh

δχ

))
= χ0

(
q(t)Xi

(
n∑
k=1

(
∂

∂χk

δh

δχ

)
∂χk
∂aj

))

=

n∑
k=1

χ

(
Xi

∂

∂χk

δh

δχ

)
∂χk
∂aj

=

n∑
k=1

χ

(
Xi

∂

∂χk

δh

δχ

) n∑
r=1

χ
(
X(k)
r

)
ηjr(t, a)

=

n∑
r=1

(
n∑
k=1

χ

(
Xi

∂

∂χk

δh

δχ

)
χ
(
X(k)
r

))
ηjr(t, a)

=

n∑
r=1

[
L
]
ir

[
J
]
rj

Combining these computations, we see that[
Ṁ
]
ij

=

n∑
k=1

[
F
]
ik

[
M
]
kj
−

n∑
k=1

([
K
]
ik

+
[
L
]
ik

) [
J
]
kj
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