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Abstract— In this paper we revisit the classical plate-ball
system and prove this system remains controllable under model
perturbation that scales the ball radius by an unknown but
bounded constant. We present an algorithm for approximate
steering and validate the algorithm with hardware experiments.
To perform these experiments, we introduce a new version of
the plate-ball system based on magnetic actuation. This system
is easy to implement and, with our steering algorithm, enables
simultaneous manipulation of multiple balls with different radii.

I. INTRODUCTION

The plate-ball system is a canonical example of manip-
ulation by rolling contacts [1]. In the classical version of
this system, the ball is held between two parallel plates and
manipulated by maneuvering the upper plate while holding
the lower plate fixed. The ball can be brought to any position
and orientation though translations of the upper plate.

We consider a variant of the plate-ball system in which
the ball radius is an unknown but bounded constant. This
variant has been considered previously by Oriolo et al. [2],
who proposed a method of iterative feedback control. We are
interested in the case where no sensor feedback is available.

Our main contribution is to prove this system is still
controllable and present an algorithm for approximate (open-
loop) steering. To do so, we apply the framework of en-
semble control theory [3]–[6] to derive an approximate
steering algorithm. The basic idea, similar to early work
on sensorless manipulation [7], is to maintain the set of all
possible configurations of the sphere and to select inputs
that reduce the size of this set and drive it toward some goal
configuration. The key insight is that the evolution of this set
can be described by a family of control systems that depend
continuously on the unknown constant. Ensemble control
theory provides conditions under which it is possible to steer
this entire family to a neighborhood of the goal configuration
with a single open-loop input trajectory. These conditions
mimic classical tests of nonlinear controllability like the
Lie algebra rank condition [8] but involve approximations
by repeated Lie bracketing that are reminiscent of seminal
work on steering nonholonomic systems by Lafferriere and
Sussman [9].

Our second contribution is a new experimental version of
the plate-ball system based on magnetic actuation, shown in
Fig. 1. This platform has several advantages over traditional
plate-ball systems. The magnetic actuation makes the mecha-
nism easy to implement, allows an unobstructed view of the
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Fig. 1. The ensemble plate-ball system consists of an array of n metal
spheres separated from an array of n magnets by a stationary sheet of
cardboard. The magnet array is attached to an xy CNC table, and the spheres
roll without slipping above their respective magnets. In this paper we prove
this system, which applies the same control to each sphere, is approximately
controllable. We then describe and implement controllers that approximately
steer spheres of unknown diameters from a starting orientation to a goal
orientation.

ball on the plane, and enables simultaneous manipulation
of multiple balls. If these balls have unique radii, by using
our algorithm this system can steer each ball to arbitrary
orientations.

The remainder of this paper proceeds as follows. We
begin with a brief review of related work, focusing on
sensorless part orientation and solutions to the plate-ball
problem (Section II). We then present our problem variation
(Section III) and prove it is controllable (Section IV). We
design an approximate steering algorithm (Section V), and
validate the algorithm with a new hardware platform (Section
VI). We discuss broader implications in our concluding
remarks (Section VII).

II. RELATED WORK

A. Sensorless Part Orientation

We are motivated by progress in sensorless part manip-
ulation, particularly the work of [7] and [10] showing that
simple actuators are often sufficient to robustly orient a wide
array of planar objects without using sensors. These works
employed parallel-jaw grippers [10] and a tray that could be
tilted in two axex [7]. These methods exploit differences in
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part geometry. Robustly orienting the rounded surface of a
sphere offers special challenges due to its inherent symmetry.

B. Sphere Manipulation

Manipulation of spherical objects by rolling has been
investigated in depth by members of the math, control,
and robotic manipulation communities. This research can be
traced to Brockett and Dai who analyzed an approximation
of the problem and determined the optimal controller for
this approximation [1]. Jurdjevic determined the optimal
shortest length paths, showing that the optimal solution curve
minimizes the integral of the geodesic curvature [11]. Li
provided a symbolic algorithm for steering the system [12],
while Marigo gave a numeric algorithm [13], and Oriolo and
Vendittelli presented an iterative approach for stabilizing the
plate-ball system [2].

This problem has produced several practical stabilizing
controllers [14], [15]. Das and Mukherjee derive a motion
planner for a plate-ball system with exponential stability [16].

Svinin and Hosoe extended the problem for plate-ball
systems with limited contact area [17]. This enables manip-
ulations of objects with spherical portions.

Several robotic plate-ball systems solutions have been
implemented (see [13], [18]). Our approach using multiple
balls is inherently underactuated, and in that respect is similar
to Choudhury and Lynch’s work that showed a single degree-
of-freedom manipulator was sufficient for orienting a sphere.
They designed a successful experiment consisting of an
elliptical bowl mounted on top of a linear motor with the
bowl’s primary axis oriented 45 degrees from the linear
motor orientation [19].

The control algorithms demonstrated in this work might
find application at a much smaller scale using microspheres.
Studies by Ding et al. on rolling friction of microspheres
[20] demonstrate that even on the micro-scale spheres can
roll with little slip. A study by Agayan et al. of the slipping
friction of optically and magnetically manipulated micro-
spheres on a glass-water interface demonstrate techniques for
manipulation that may benefit from our methodology [21].

Lastly, in this paper we demonstrate that a continuum of
differently-sized spheres is controllable. This means a finite
number of spheres with heterogeneity in diameter are also
controllable. Such a controller would be similar to the micro
manipulation of Diller and Sitti et al. They controlled the
2D coordinates of multiple micro-scale permanent magnets
by exploiting heterogeneity in the magnet’s dimensions [22].

C. Ensemble Control

We are motivated by the work on ensemble control in
[3], [4], [23], [24]. These works studied the controllability
properties of the Bloch equations, a unit vector in R3. Much
of this work can be applied to the sphere, which moves in
SO(3).

III. PROBLEM STATEMENT

We are interested in approximate steering of the orienta-
tion of a sphere with unknown diameter by rolling on the
plane.

A. One Sphere

Consider a sphere of radius r that rolls without slipping on
a plane. Ignoring position, we describe its configuration by
the rotation matrix R and its configuration space by SO(3).
The control inputs are the rolling speed along the x-axis u1
and the rolling speed along the y-axis u2. Corresponding to
these inputs, we define a basis for the Lie algebra Ωx,Ωy
where

Ωx=

0 0 0
0 0 1
0 −1 0

,Ωy=

0 0 −1
0 0 0
1 0 0

,Ωz=

0 −1 0
1 0 0
0 0 0

,
and write the kinematics of the sphere in the standard form

Ṙ(t) =
1

r
R(t)

(
Ωxu1(t) + Ωyu2(t)

)
. (1)

Given Rstart, Rgoal ∈ SO(3) and an error bound µ > 0, the
approximate steering problem is to find open-loop inputs

(u1(t), u2(t)) : [0, T ]→ U

that result in R(0) = Rstart and dist(R(T ), Rgoal) ≤ µ for
free final time T , where

dist(Ra, Rb) = arccos
(
(trace

(
R−1a Rb

)
− 1)/2

)
is the minimum angular distance between two rotation ma-
trices. If such inputs always exist, then we say that (1) is
approximately controllable—and indeed they do, since Ωx,
Ωy , and the Lie bracket [Ωx,Ωy] span the tangent space
TR (SO(3)) everywhere.

B. Ensemble of Spheres

We will solve this same approximate steering problem,
but under model perturbation of the sphere radius that scales
the rolling speeds u1 and u2 by some unknown, bounded
constant ε. The resulting kinematics have the form

Ṙ(t) =
ε

r
R(t)

(
Ωxu1(t) + Ωyu2(t)

)
. (2)

where ε ∈ [1− δ, 1 + δ] for some 0 ≤ δ < 1. Rather than try
to steer one sphere governed by (2)—where ε is unknown—
our approach is to steer an uncountably infinite collection of
spheres parameterized by ε, each one governed by

Ṙ(t, ε) =
ε

r
R(t, ε)

(
Ωxu1(t) + Ωyu2(t)

)
. (3)

Following the terminology introduced by [3]–[5], we call this
fictitious collection of spheres an ensemble and call (3) an
ensemble control system. The idea is that if we can find open-
loop inputs u1(t) and u2(t) that result in R(0, ε) = Rstart
and dist(R(T, ε), Rgoal) ≤ µ for all ε ∈ [1 − δ, 1 + δ],
then we can certainly guarantee that the actual sphere,
which corresponds to one particular value ε∗ of ε, will
satisfy dist(R(T, ε∗), Rgoal) ≤ µ. If such inputs always exist,
then we say that (3) is ensemble controllable, interpreted
as being approximately controllable on the function space
L2 ([1− δ, 1 + δ], SO(3)).
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IV. CONTROLLABILITY

We will now prove that the system (3) is ensemble
controllable. We will do this by using repeated bracketing
to get higher-order powers of ε, and then by using polyno-
mial approximation to construct arbitrary vector flows. This
approach is similar to what appears in [4], and involves
computations that are reminiscent of [9].

Theorem 1: The system (3) is ensemble controllable.
Proof: Any rotation A in SO(3) can be parameterized

by the rotations θ, φ, ψ about the world z-axis, x-axis and
then z-axis.

A = Rz(θ)Rx(φ)Rz(ψ)

To approximate any rotation A with an ensemble, it is
then sufficient to construct the rotations Rz

(
θ̂(ε)

)
≈ Rz(θ),

Rx
(
φ̂(ε)

)
≈ Rx(φ) and Rz

(
ψ̂(ε)

)
≈ Rz(ψ).

We will proceed by showing how to construct Rz
(
θ̂(ε)

)
.

For small time dt, by rolling clockwise in a small square
pattern on the plane, we can generate movement about the
z-axis.

exp{−1

ε

√
dtΩy} exp{−1

ε

√
dtΩx}

· exp{1

ε

√
dtΩy} exp{1

ε

√
dtΩx} ≈ I + ε−2dtΩz

= exp{ε−2dtΩz}

This Lie bracket movement generates the previously re-
stricted motion about the z-axis.

We take further Lie brackets to find new control vector
fields: [

1

ε
Ωy,

1

ε
Ωx

]
= −ε−2Ωz[

1

ε
Ωy

[
1

ε
Ωy,

1

ε
Ωx

]]
= −ε−3Ωx[

1

ε
Ωy

[
1

ε
Ωy

[
1

ε
Ωy,

1

ε
Ωx

]]]
= ε−4Ωz

...

= −1kε−2k+1Ωz

= −1kε−2kΩx.

By successive Lie brackets, we can synthesize terms of
the form {ε−2k+1Ωz} and {ε−2kΩx}. With these terms as
generators, we can approximate the rotation

exp

{
m∑
k=0

akε
−2k+1Ωz

}
,

The Stone-Weierstrass theorem [25] tells us that given η >
0 and a continuous real function

ν(ε) : [1− δ, 1 + δ]→ R,

there exists a polynomial function ρ(ε) such that

|ρ(ε)− ν(ε)| < η

for all ε ∈ [ε, ε]. An immediate corollary is that continuous
real functions on the domain [ε, ε] = [1− δ, 1 + δ] for some

0 ≤ δ < 1 can be uniformly approximated either by an odd
polynomial or by an even polynomial. (This result would
not be true on an arbitrary domain, which is why we restrict
δ < 1.) As a consequence, we can choose a ∈ Rk so that

θ(ε) ≈
m∑
k=0

aiε
−2k+1

for ε ∈ [1 − δ, 1 + δ], with error vanishing in k. The time
complexity of the resulting motion increases with k and with
the number of switches required to approximate flows along
each vector field ε−2k+1Ωz and ε−2kΩx, but remains finite
for any given µ > 0. Our result follows.

V. CONTROLLER DESIGN

In this section we provide two methods for approximate
open-loop steering of a rolling sphere, the first based on
primitives that approximate an in-plane rotation of θ, and
the second based on discrete optimization. The primitive-
based method relies on concatenating primitives. Using fewer
primitives reduces the cumulative error. It is well known
that three orthogonal rotations span SO(3). In the following
section we show that two straight line rolls in the horizontal
plane also span SO(3). We then construct a motion primitive
for spheres with radii ∈ [1 − δ, 1 + δ] that approximates
a rotation of θ about the world x-axis by a sequence of
orthogonal rolls in the plane. This 2D path primitive can
then be rotated an angle ψ about the z-axis by[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
to approximate a rotation about any axis parallel to the plane.
Two of these primitives then are sufficient to approximately
reorient all spheres with radii ∈ [1− δ, 1 + δ] by an arbitrary
rotation in SO(3).

A. Arbitrary Orientation in SO(3) with Two Straight Rolls

Any rotation A can be described as a rotation about the
orthogonal world reference frames Rz(θ)Rx(φ)Rz(ψ). This
corresponds to moving the sphere’s north pole to latitude φ,
longitude θ, then twisting about the original north pole ψ:

Rz(θ)Rx(φ)Rz(ψ)

=

 cθcψ − cφsθsψ −cφcψsθ − cθsψ sθsφ
cψsθ + cθcφsψ cθcφcψ − sθsψ −cθsφ

sφsψ cψsφ cφ


Our system is constrained to roll along the plane. Any roll

on the plane along a line of length ` making the angle α with
the x-axis is given by

Rp(`, α) =

 c2α + c`s
2
α (1− c`)cαsα s`sα

(1− c`)cαsα c`c
2
α + s2α −cαs`

−s`sα cαs` c`

 .
We can invert any rotation A = Rz(θ)Rx(φ)Rz(ψ) with

two straight line rolls in the plane of the form A−1 =
Rp(π,

1
2 (θ − ψ)) · Rp(π − φ, θ). The first movement rolls

the sphere so that the original north pole is pointing down,
and the second rotation returns the north pole to the original
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Fig. 2. A sample primitive of the form (4), with βk = π/3 and φk =
π/2. A sphere following this path generates to first order the rotation ≈
βk

1
ε
cos(φk 1

ε
). By subdividing the rotation as illustrated on the right, we

can improve arbitrarily this approximation, at the cost of a longer path.

orientation. The first rotation is of length `1 = π − φ with
|φ| ≤ π and the second rotation is of length `2 = π, so the
total path length is π ≤ `1 + `2 ≤ 2π.

B. Rotating Ensemble Approximately θ About the x-Axis

Consider the motion primitive given by Pryor in [26] of
the following form for a non-negative integer k, and freely
chosen φ, βk ∈ R:

(u1, u2) =



(0,−1) 0 ≤ t < φk

(1, 0) · · · ≤ t < · · ·+ βk/2

(0, 1) · · · ≤ t < · · ·+ 2φk

(1, 0) · · · ≤ t < · · ·+ βk/2

(0,−1) · · · ≤ t < · · ·+ φk

(4)

Such a primitive is shown in Fig. 2. It is easy to show by
direct calculation that the result is to achieve

∆x(ε) = βk, ∆y(ε) = 0, ∆R(ε) ≈ Ry
(
βk

1

ε
cos(φk

1

ε
)

)
.

The approximation Ry(βk
1
ε cos(φk 1

ε )) is created by ap-
plying the motion primitive and taking the first-order Taylor
series expansion at βk = 0. The approximation degrades for
large values of βk, but by repeating the primitive (4) j times
with parameter β′k = βk/j the approximation improves. We
can achieve arbitrary accuracy in the primitive by increasing
j. Because primitives of this form all rotate in the same
direction, we are free to concatenate them. The result after
applying n primitives with k = 1, . . . , n is

∆x(ε) =
n∑
k=1

βk, ∆y(ε) = 0, ∆R(ε) ≈ Ry (∆θ(ε)) ,

where we define ∆θ(ε) =
∑n
k=1 βk

1
ε cos(φk 1

ε ).

C. Achieving Error of a Particular Order

For convenience, we define ε−1 = 1+δ, and restrict |δ| <
1. We may express the change in x and y after applying
n+1 primitives, defined above, as a Taylor series in δ about
δ = 0:

∆θ(δ) = ∆θ(0) +
∂∆θ

∂δ

∣∣∣∣
δ=0

δ +
1

2!

∂2∆θ

∂δ2

∣∣∣∣
δ=0

δ2 + · · · .

This series has the form

∆θ(δ) =

n−1∑
j=0

sjδ
j +O (δn) .

Note that this expression is linear in sj , and that each
coefficient sj is linear in β1, . . . , βn. Define

s =
[
s0 . . . sn−1

]>
, β =

[
β1 . . . βn

]>
,

–100 –50 0 50 100

–50

0

50

n = 1

–100 –50 0 50 100

–50

0 n = 2

–100 –50 0 50 100
–100
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0 n = 3

–100 –50 0 50 100
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–50

0
n = 4

Fig. 3. Rolling paths generated using Taylor series to approximate the
rotationRx(π) with a threshold of π/6 and a nominal ball radius of 10.3mm
to (left to right, top to bottom) 1, 2, 3 and 4th-order. Path lengths are
{32.4, 311.9, 584.0, 919.4} mm. The start point is shown in green and
the stop point in red. The 230 × 125 mm workspace for our manipulator
is represented by a blue rectangle.

so we can write s = Sβ (5)

for some matrix S that does not depend explicitly on δ. To
achieve ∆θ = 1 with error that is of order n in δ, we require
only that s = [1, 0, . . . , 0]>.

The achievable error decreases exponentially in the num-
ber n + 1 of primitives used. We need to solve a system
of n linear equations to achieve nth-order error. As a con-
sequence, exactly n primitives are required to achieve nth-
order error, for any n. There is an implicit assumption here
that S is nonsingular (and, in practice, well conditioned), but
this assumption will hold for “almost all” choices of φ.

By linearity, it is clear that the scaled parameters β∆θ will
reach arbitrary ∆θ. We can use this method to generate paths
that satisfy arbitrary accuracy bounds, but the required paths
may be very long. Fig. 3 depicts paths generated to turn π
about the x-axis with a threshold of π/6. In the following
section we use optimal control to generate shorter paths.

D. Optimal Control with Piecewise-Constant Inputs

We want to steer an ensemble of spheres of radius rε
with primitives that consist of alternating rotations along the
positive x- and y-axes to implement a desired rotation Rgoal.
The composite rotation R(Θ, ε) is

R(Θ, ε) =

n∏
i=1

Rx

(
θ2i−1
rε

)
Ry

(
θ2i
rε

)
(6)

for Θ = [θ1, . . . , θ2n] , θi ≥ 0,

where Rx(α) is a rotation of α about the x-axis and Ry(β)
is a rotation of β about the y-axis. The problem is to find Θ
such that the integral∫ 1+δ

1−δ
dist (R (Θ, ε)), Rgoal) dε (7)

is minimized. In our discrete optimization routine, we replace
the integral in (7) with a summation, and use gradient descent
on Θ from multiple random seed values Θinit to search for
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WITH 1 SIGNAL

Fig. 4. Left: Rolling path generated by discrete optimization over 10
segments for turning ensemble of spheres with radii ±25% of nominal π
about the x-axis with a nominal ball radius of 10.3 mm. The path length
is 188.6 mm. Right: three-stage path that rotates spheres approximately
Rx(π), Rz(π/2), Rx(π). This compound path is 577 mm long. The start
point is shown in green, intermediate points in blue, and stop point in red.

local minima in
n−1∑
k=0

dist

(
R

(
Θ, 1− δ +

2δk

n− 1

)
, Rgoal

)
(8)

For the paths generated in Fig. 4, we used 500 random
seed values and n = 15. This optimization routine provided
adequate results, but future work should take advantage of
modern optimization methods.

VI. HARDWARE IMPLEMENTATION

A. System Design

The prototype spherical parts handler is shown in Fig. 1.
A grid array of n magnets attached to a CNC xy-table can
reorient n spheres by rolling in the plane when a nonmoving
substrate is placed between the spheres and magnet array. A
table-top CNC mill table is used as an xy planar manipulator
to slide a tray in the plane. The tray is manufactured of
MDF and is bolted to the mill. Fifteen holes are drilled into
the surface. Each holds a 5 × 8 mm diameter cylindrical
neodymium rare-earth magnet flush to the surface of the
tray. The xy-table provides a 230× 125 mm workspace. By
securing a stationary, 0.15 mm thick cardboard sheet on top
of the tray, we have a manipulator that can roll variable-sized
ferro-magnetic spheres in the plane with minimal slip. Six
spheres with diameters {16, 18, 19, 22, 24, 25.4} mm were
used to test manipulation algorithms in this paper.

Our prototype was inspired by the kinetic sculptures of
Bruce Shapiro and Jean-Pierre Hébert, which draw paths in
sand using a rolling steel ball actuated by a hidden servo
controlled magnet [27], [28].

B. Measuring System Position

Tracking the orientation of a sphere is a common problem,
with approaches ranging from using colored circles painted
at the vertices of Platonic solids [29], painting a fiducial
pattern on a sphere and then comparing camera images to a
library of generated rotated images [30], to tracking sphere
orientation using dots precisely applied to the ball [31]. Each
of these approaches requires accurate marker application,
which increases in difficulty as the sphere shrinks in size.
An alternate approach applies fiducial stickers to the sphere,
learns their positions during a training phase, and then tracks
these fiducials [32]. We adapted this method to use hand-
drawn fiducials because stickers would affect the effective
sphere diameter. We then estimated the sphere position by
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1.5mm Felt (trials failed)

Fig. 5. Repeatability test for rolling 25.4 mm spheres. Every marker is
the average of 3 trials and each test repeated a given pattern 10 times. (Top)
pattern 1: back and forth 2π in x, (Bottom) pattern 2: a square box, each
side a 2π rotation. The best surfaces had a drift of about 0.09 radians per
250 radians of commanded movement (0.04% error).

tracking five points in each image using Horn’s method [33],
producing at frame k the rotation matrix Rk. We used ‘>’
shaped fidicials.

C. Characterizing System Repeatability

Our control algorithm assumes the spheres roll without
slipping. To test the accuracy of this simplification, we ran a
series of repeatability tests with different substrate materials.

A good substrate should be thin, because magnetic
strength decreases proportional to the inverse cube of the
distance from the dipole. The substrate should have low
friction on the bottom surface that the tray and magnets
slide along, but high friction on the top surface to prevent
the spheres from slipping. Moreover, the top surface should
be flat and non-deformable so that rolling is uniform. We
tested five surfaces, 0.26mm acrylic, 0.35mm cardboard, 2
and 3mm craft foam, and 1.5mm thick stiff felt. The craft
foam had high friction with the tray, so we placed the acrylic
sheet beneath the foam for all tests. We ran two tests for each
substrate material.

1) Straight Line: 2πr, then −2πr, both along the x-axis.
2) Square Box: square pattern with −2πr sides.
Each test was run with three 25.4 mm diameter steel

(grade 200, 1 ±0.002 in, sphericity 0.002 in) spheres, and
the patterns were repeated 10 times, with the orientation
recorded at the beginning and at the end of each pattern.
These tests used slightly smaller permanent magnets (3× 8
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Fig. 6. Experimental results of applying the paths shown in Figs 3 and 4. Six spheres with diameter {16, 18, 19, 22, 24, 25.4} mm were tested. For
each sphere, the optimized path was tested 25 times and each primitive-based path 10 times. Error bars show ± one std. Last plot shows theoretical error.

mm diameter) than those used in the final prototype. Plots of
the resulting orientation error are shown in Fig. 5. These plots
show a steady increase in the average orientation error. The
best substrate material for all trials was 0.35 mm cardboard,
followed by 0.26 mm acrylic, 2 mm foam, 3 mm foam, and
1.5 mm felt. In the longer trials using the square box pattern,
both the 3 mm craft foam and 1.5 mm felt failed when the
spheres detached from their magnets and rolled freely atop
the surface. The best surface, 0.15 mm cardboard, is thin,
horizontally rigid, smooth, and a compromise for friction
between the tray and between the spheres. This surface had
a drift of about 0.09 radians per 250 radians of commanded
movement, a 0.04% error.

D. Results

1) Testing Movement Primitives: We compared motion
primitives designed to rotate approximately π about the
world y-axis. All tests were performed with six spheres
ranging in size ±25% of nominal diameter. We compare
primitives based on 1,2,3 and 4th-order Taylor series with
a primitive designed by discrete optimization over a 10 seg-
ment path. These movements are primitives because they can
be concatenated to approximate any desired rotation. Note
first that due to symmetry the rotation Ry(π) is equivalent
to rotating about any axis parallel to the plane π. Secondly,
the Taylor series approximations can be linearly scaled in
the x-axis direction to approximate any rotation β about the
world y-axis.

The paths for the Taylor series and the discrete optimiza-
tion primitives are shown in Figs. 3 and 4. These primitives
were tested by measuring the starting and ending orientation
for 10 iterations of the motion for the Taylor series primitives
and 25 times for the discrete optimization path. The errors
recorded for these tests are shown in Fig. 6 for all six sphere
sizes.

For all spheres, the discrete optimization-based path per-
formed best. The Taylor series-based paths increased in
accuracy as the order increased from 1st to 3rd order, but the
4th order path decreased in accuracy. The accuracy gained
by the higher-order series approximation is cancelled by the
process-induced drift shown in Fig. 5.

2) Following a Path Sequence: To demonstrate how mo-
tion primitives can be sequenced to complete a more com-
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Fig. 7. Accuracy test for six spheres with diameters {16, 18, 19, 22, 24,
25.4} mm. The spheres were commanded to follow the 10-segment path in
Fig. 4 designed by discrete optimization and the test was repeated 25 times.
The yellow line is the theoretical error with no process noise. The red line
shows the mean errors for each sphere tested ± one std.

↓

Rx(π)

Rz(π/2)

Rx(π)

Fig. 8. Snapshots of six different-sized spheres while rolling along the
three-stage path in Fig. 4. This path consists of a roll that approximates
Rx(π), followed by Rz(π/2), then Rx(π). Four letters were printed
on appropriate sides of each sphere to illustrate the movement. See the
multimedia attachment for a video of this rotation sequence.

plicated task, we concatenated three rolls that respectively
approximate the rotations Rx(π), Rz(π/2), and Rx(π). The
three-stage path is 577 mm long and shown in Fig. 4. We then
selected six different-sized spheres and printed four letters on
appropriate sides of each sphere to illustrate the movement.
Fig. 8 shows four snapshots of these spheres while rolling
along the three-stage path. See the multimedia attachment
for a video of this rotation sequence.

VII. CONCLUSION

We began with the problem of manipulating a plate-
ball system despite model perturbation that scales the ball
diameter by an unknown but bounded constant. We modeled
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the sphere as an ensemble control system, showed that this
system is ensemble controllable, and derived an approximate
steering algorithm to bring the sphere to within an arbitrarily
small neighborhood of any given orientation in SO(3). We
applied our work to spheres with unknown but bounded
diameters, and validated our approach with hardware exper-
iments that simultaneously reoriented multiple spheres.

Our solutions consisted of open-loop paths that could be
precomputed. We demonstrated that the hardware system has
low noise that was ≈0.04% of commanded inputs. This noise
introduces a drift term to the state evolution that cannot
be countered by open-loop control. In many application
environments, it is practical to add a camera system to
sense the ball orientations. In this paper we showed that
a continuum of different-sized spheres are approximately
controllable by a shared input. Thus, a finite number of
different-sized spheres is approximately controllable by a
shared input. Using methods similar to [23] with the Bloch
system, future work will apply feedback techniques to our
plate-ball system.

Additionally, the classical plate-ball system is steerable
in R2 × SO(3). Our controllability result of Section IV
used bracket motion to reorient the spheres. These bracket
motions are rotations in a square pattern on the plane, and
leave the sphere x and y position unchanged. Therefore we
can steer from a given (xstart, ystart, Rstart) to a desired
(xgoal, ygoal, Rgoal) ∈ [R2×SO(3)]. We apply a straight line
rotation to move the ensemble of spheres to xgoal, ygoal. This
move incurs some rotation φ(ε). We finish by performing a
rotation in place that approximates Rgoalφ(ε)>R>start.

Finally, an important contribution of this paper was a new
experimental platform, so we provided a characterization of
the system reliability and described the system so it can
be replicated. The magnetic actuation makes the mechanism
easy to implement, allows an unobstructed view of the ball on
the plane, and enables simultaneous manipulation of multiple
balls with different radii.
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