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Approximate Steering of a Unicycle Under Bounded
Model Perturbation Using Ensemble Control

Aaron Becker, Student Member, IEEE, and Timothy Bretl, Member, IEEE

Abstract—This paper considers the problem of steering a non-
holonomic unicycle despite model perturbation that scales both the
forward speed and the turning rate by an unknown but bounded
constant. We model the unicycle as an ensemble control system,
show that this system is ensemble controllable, and derive an ap-
proximate steering algorithm that brings the unicycle to within an
arbitrarily small neighborhood of any given Cartesian position.
We apply our work to a differential-drive robot with unknown but
bounded wheel radius and validate our approach with hardware
experiments.

Index Terms—Ensemble control theory, model perturbation,
nonholonomic motion planning.

I. INTRODUCTION

IN this paper, we apply the framework of ensemble control
theory [1]–[8] to derive an approximate steering algorithm

for a nonholonomic unicycle in the presence of model perturba-
tion that scales both the forward speed and the turning rate by an
unknown but bounded constant. The basic idea, which is similar
to early work on sensorless manipulation [9], is to maintain the
set of all possible configurations of the unicycle and to select
inputs that reduce the size of this set and drive it toward some
goal configuration. The key insight is that the evolution of this
set can be described by a family of control systems that depend
continuously on the unknown constant. Ensemble control theory
provides conditions under which it is possible to steer this entire
family to a neighborhood of the goal configuration with a sin-
gle open-loop input trajectory. These conditions mimic classical
tests of nonlinear controllability like the Lie algebra rank condi-
tion [10] but involve approximations by repeated Lie bracketing
that are reminiscent of seminal work on steering nonholonomic
systems by Lafferriere and Sussman [11].

In particular, consider a single unicycle that rolls without
slipping. We describe its configuration by q = (x, y, θ) and its
configuration space by Q = R

2 × S
1 . The control inputs are the
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forward speed u1 and the turning rate u2 . We restrict (u1 , u2) ∈
U for some constraint set U ⊂ R

2 , where we assume that U is
symmetric with respect to the origin and that the affine hull of
U is R

2 . Corresponding to these inputs, we define vector fields
g1 , g2 : Q → TqQ by

g1(q) =

⎡
⎣

cos θ
sin θ

0

⎤
⎦ , g2(q) =

⎡
⎣

0
0
1

⎤
⎦

and write the kinematics of the unicycle in the standard form

q̇(t) = g1(q(t))u1(t) + g2(q(t))u2(t). (1)

Given qstart , qgoal ∈ Q and μ > 0, the approximate steering
problem is to find open-loop inputs

(u1(t), u2(t)) : [0, T ] → U

that result in q(0) = qstart and ‖q(T ) − qgoal‖ ≤ μ for free final
time T , where ‖·‖ is a suitable norm on Q (for example, any
left-invariant Riemannian metric [12]). If such inputs always
exist, then we say that (1) is approximately controllable—and
indeed they do, since g1 , g2 , and the Lie bracket [g1 , g2 ] span
the tangent space TqQ everywhere.

We will solve this same approximate steering problem, but
under model perturbation that scales both the forward speed u1
and the turning rate u2 by some unknown but bounded constant.
The resulting kinematics have the form

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t)) (2)

where ε ∈ [1 − δ, 1 + δ], for some 0 ≤ δ < 1. Rather than try
to steer one unicycle governed by (2)—where ε is unknown—
our approach is to steer an uncountably infinite collection of
unicycles parameterized by ε, each one governed by

q̇(t, ε) = ε
(
g1 (q(t, ε)) u1(t) + g2 (q(t, ε)) u2(t)

)
. (3)

Following the terminology introduced in [1]–[8], we call this
fictitious collection of unicycles an ensemble and call (3) an
ensemble control system. The idea is that if we can find open-
loop inputs u1(t) and u2(t) that result in q(0, ε) = qstart and
‖q(T, ε) − qgoal‖ ≤ μ for all ε ∈ [1 − δ, 1 + δ], then we can cer-
tainly guarantee that the actual unicycle, which corresponds to
one particular value ε∗ of ε, will satisfy ‖q(T, ε∗) − qgoal‖ ≤ μ.
If such inputs always exist, then we say that (3) is ensemble
controllable, interpreted as being approximately controllable
on the function space L2 ([1 − δ, 1 + δ],Q). We will, in fact,
show that (3) is not ensemble controllable, but will proceed
to derive that a reduced subsystem is. Our proof will depend
on being able to approximate arbitrary elements of the tan-
gent space to L2 ([1 − δ, 1 + δ],Q), capturing the essence of
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classical tests like the Lie algebra rank condition. Solving the
approximate steering problem with respect to the subsystem will
produce inputs that reach an arbitrarily small neighborhood of
any Cartesian position, but not of any heading.

We will apply our work to a differential-drive robot with
unknown but bounded wheel radius, showing that (2) is an ap-
propriate model and validating our approach to approximate
steering with hardware experiments.

However, let us be clear—in its current form, this application
of our work is not “practical” and does not improve upon exist-
ing methods of motion planning and control for mobile robots.
In particular, these robots typically have both proprioceptive
(for example, odometry) and exteroceptive (for example, sonar,
laser, vision) sensors. With state estimates that come from these
sensors, it is easy to build a feedback controller that guarantees
exact asymptotic convergence to any given Cartesian position
under the same type of model perturbation that we consider [13,
Ch. 11.6.2]. It is just as easy to build a robust feedback controller
that regulates posture and not just Cartesian position [14]. Meth-
ods like these extend to a broader class of model perturbation
(for example, scaling forward speed and turning rate by differ-
ent amounts) and to other types of uncertainty. There is also an
enormous literature on odometry calibration for wheeled mo-
bile robots to reduce model perturbation [15], [16], from offline
approaches like “UMBmark” [17] to approaches that are on-
line [18] and even simultaneous with localization [19]. These
citations represent only a fraction of prior work on calibration
and robust feedback control, all of which is more effective than
what we propose when sensors are available.

Instead, we use the differential-drive robot as a hardware
platform because the application of ensemble control theory to
this system is easy to understand and leads to results that read-
ers may find surprising. For example, our approximate steering
algorithm—which is derived for an infinite-dimensional family
of control systems and not just for a single unicycle—ultimately
requires solving only one set of linear equations, which can be
precomputed in closed form. Similarly, the formulation of these
linear equations relies on series expansions that make explicit
the tradeoff between the cost and complexity of the resulting
input trajectory and the extent to which this input trajectory is
robust to model perturbation. Finally, the fact that inputs exe-
cuted in open loop will bring a real mobile robot to a neighbor-
hood of the same Cartesian position regardless of wheel radius
is something that we did not initially think possible (see the
video attachment).

We hope that these results stimulate interest and provoke a
new line of inquiry that may lead to practical application in
robotics. Our own interest in ensemble control, for example,
is largely motivated by potential application to grasping and
sensorless manipulation. Consider the plate–ball problem in-
troduced by Brockett and Dai [20], which is a case study of
rolling bodies in contact [21]–[23]. If the ball has unknown
but bounded radius, the reader may verify—using a method of
analysis similar to the one we describe in this paper—that the
resulting system is ensemble controllable. This result hints at a
new approach to robust manipulation of so-called “toleranced
parts” [24], [25], an ongoing problem in automated assembly

and industrial parts handling. A considerable amount of work
remains to be done, however, before ideas like this one find their
way into practice.

The remainder of this paper is organized as follows. We begin
in Section II with a brief review of ensemble control theory and
other related work. In Section III, we proceed to show that (3) is
not ensemble controllable but that a reduced subsystem is. Based
on this result, we derive an approximate steering algorithm in
Section IV that brings the unicycle to within an arbitrarily small
neighborhood of any given Cartesian position, regardless of ε.
Finally, in Section V, we validate our approach in experiments
with a differential-drive robot that has unknown but bounded
wheel radius.

Note that a preliminary conference version of this paper has
appeared in [26], but the approximate steering algorithm that
we present here is quite different.

II. RELATED WORK

A. Ensemble Control

Ensemble control, as presented in [1]–[8], extends the theory
of nonlinear controllability from finite-dimensional systems,
for example of the form (1), to a particular class of infinite-
dimensional systems characterized by a dispersion parameter,
for example of the form (3), where this parameter is ε. The fact
that standard controllability theorems that rely on checking a
rank condition is a clue that such an extension might be nec-
essary. Chow’s theorem, for instance, implies that (1) is small-
time locally controllable—hence, approximately controllable—
because the Lie algebra generated by g1 and g2 has rank 3 ev-
erywhere, which is equal to the dimension of TqQ (see, for ex-
ample, [12]). Both L2 ([1 − δ, 1 + δ],Q) and its tangent space
have infinite dimension; therefore, we will never accumulate
enough vector fields to satisfy this same rank condition for (3).
However, we note that the rank condition is only used to guar-
antee that it is possible to approximate motion in any direction
we like. For (1), we see that g1 , g2 , and

[g1 , g2 ] =
∂g2

∂q
g1 −

∂g1

∂q
g2

are linearly independent and span the tangent space TqQ at
every configuration q ∈ Q; therefore, any element of TqQ can
be approximated by rapid switching between inputs. For (3), it
is possible to arrive at a similar result. In particular, we will take
the same basic approach as in [7], using repeated bracketing
to get higher order powers of ε and, then, using polynomial
approximation to construct arbitrary vector flows. Systems like
ours are ignored by Li and Khaneja [7] after noting that

q̇(t, ε) = ε

m∑
i=1

gi (q(t, ε)) ui(t)

is not ensemble controllable if g1 , . . . , gm generate a nilpotent
Lie algebra. We will indeed show that (3) is not ensemble con-
trollable in Section III, but will then proceed to derive a reduced
subsystem that is ensemble controllable.

The origins of this approach are within the physics commu-
nity. In this context, an “ensemble” is a very large collection
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of identical or nearly identical molecules, atoms, or elementary
particles, and the goal of “ensemble control” is to manipulate
the average properties of such an ensemble. Early work in this
area was done, for example, by Meer, who won the 1984 Nobel
prize in physics for controlling the density at which circulat-
ing protons are packed in an accelerator using applied magnetic
fields [27]. The more recent works of Brockett, Khaneja, and
Li have found primary application so far to quantum systems,
for example, manipulating nuclear spins in nuclear magnetic
resonance spectroscopy [1]–[8]. Robotics researchers are also
beginning to adopt the term “ensemble,” for example, in the
context of multirobot formations [28] and artificial muscle ac-
tuators [29], but the formal methodology of ensemble control
has yet to be applied. Other approaches to deal with infinite-
dimensional systems—such as taking advantage of differential
flatness—have been developed in parallel, as in [30]. The main
tool used in this other work is functional analysis, which has re-
cently started to inform ongoing work in ensemble control [31].

B. Robust Control

Robust control provides a framework for the design of feed-
back policies that compensate for model perturbation. Consider
the dynamic system

ẋ = f(x, u, ε)

y = h(x, u, ε)

where x is the state, u is the input, y is the measurement, and ε
is an unknown but bounded parameter. We are free to define an
equivalent system

ẋ = Ax + Bu + w1

y = Cx + Du + w2

for example, by linearization, that pushes all model perturbation
and nonlinearity into the mapping

(x, u, ε) �→ (w1 , w2) .

Then, the idea is to replace this one unknown mapping by a set
of known linear mappings that capture all possible input/output
behavior. This approach has been a topic of study for more than
50 years—a modern reference is the book [32]. Although our
own work has much the same flavor, robust control theory is
primarily focused on the problem of closed-loop stabilization
with feedback, whereas we focus on the problem of open-loop
steering in the absence of sensor measurements. We emphasize
again that robust feedback control is, in general, much more
effective than what we propose when sensors are available, as
they typically are for mobile robots (see Section I). We also note
previous work on robust feedforward control [33], on robust
feedback control [34] using series expansions similar to what
we will describe in Section IV, and on the relationship between
ensemble control and robust control [35], this last work was
developed independently from a different perspective.

C. Motion Planning Under Uncertainty

There is a vast literature on motion planning under uncertainty
in robotics, excellent reviews of which may be found in texts
such as [15], [36], and [37] and examples of which range from
early work on preimage backchaining [38] to very recent work
on needle-steering using the stochastic motion roadmap [39]. As
an example, we have drawn particular inspiration from work on
sensorless manipulation [9]. In this work, like our own, the basic
idea is to explicitly maintain the set of all possible robot configu-
rations and to select a sequence of actions that reduces the size of
this set and drives it toward some goal configuration. Carefully
selected primitive operations can make this easier. For exam-
ple, sensorless manipulation strategies often use a sequential
composition of primitive operations, “squeezing” a part either
virtually with a programmable force field or simply between two
flat, parallel plates [40]. Sensorless manipulation strategies also
may take advantage of limit cycle behavior, for example, engi-
neering fixed points and basins of attraction so that parts only
exit a feeder when they reach the correct orientation [41], [42].
These two strategies have been applied to a much wider array
of mechanisms such as vibratory bowls and tables [43], [44] or
assembly lines [40], [45], [46], and have also been extended to
situations with stochastic uncertainty [47], [48] and closed-loop
feedback [49], [50]. Our interest in this particular collection of
work also stems from our belief that ensemble control theory
may provide new insight into sensorless manipulation of many
objects at once.

III. ANALYSIS OF CONTROLLABILITY

In this section, we will establish controllability results for the
system (3). Our method of approach will closely follow the one
taken in [1]–[8]. First, we state formally what it means to be
ensemble controllable.

Definition 1: Consider the family of control systems

q̇(t, ε) = f (q(t, ε), u(t), t, ε)

where q ∈ Q ⊂ R
n , u ∈ U ⊂ R

m , ε ∈ [1 − δ, 1 + δ] for 0 ≤
δ < 1, and f is a smooth function. This family is ensemble
controllable on the function space L2 ([1 − δ, 1 + δ],Q) if for
all μ > 0 and continuous qstart , qgoal ∈ L2 ([1 − δ, 1 + δ],Q),
there exists T > 0 and piecewise-continuous u : [0, T ] → U
such that q(0, ε) = qstart(ε) and ‖q(T, ε) − qgoal(ε)‖ ≤ μ for
all ε ∈ [1 − δ, 1 + δ].

Note that this definition is a slight generalization of what
appeared in Section I, since we allow qstart and qgoal to be
arbitrary functions of ε. As pointed out in [31], the reader should
interpret being ensemble controllable as being approximately
controllable on L2 ([1 − δ, 1 + δ],Q).

A. Finding a Controllable Subsystem

We begin with a proof by construction of the following neg-
ative result, which was originally suggested by Li [3].

Theorem 2: If δ > 0, then the system (3) is not ensemble
controllable.
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Proof: Note that for any u1 and u2 , we have

θ̇(t, ε) = εu2(t).

As a consequence, if we define an auxiliary state γ(t) such that
γ(0) = 0 and

γ̇(t) = u2(t)

then it is clear that

θ(t, ε) = θ(0, ε) + εγ(t)

for all ε ∈ [1 − δ, 1 + δ], where we assume, without loss of
generality, that we are working in the coordinates of a single
local chart on S1 . For any Δθ > 0, choose

qstart(ε) = (xstart(ε), ystart(ε), θstart(ε))

and

qgoal(ε) = (xgoal(ε), ygoal(ε), θgoal(ε))

satisfying

θgoal(ε) − θstart(ε) = Δθ

for all ε ∈ [1 − δ, 1 + δ], and let μ = δΔθ/2. We have

‖q(T, ε) − qgoal(ε)‖ ≥ ‖θ(T, ε) − θgoal(ε)‖
= ‖θ(0, ε) + εγ(T ) − θgoal(ε)‖
= ‖εγ(T ) − (θgoal(ε) − θstart(ε))‖
= ‖εγ(T ) − Δθ‖ .

Since we have assumed δ > 0, then for any γ(T ), there exists
some ε ∈ [1 − δ, 1 + δ] at which

‖εγ(T ) − Δθ‖ > μ.

Therefore, (3) is not ensemble controllable by definition. �
This result suggests the construction of a subsystem that, as

we will show in the following section, is ensemble controllable.
We write the configuration of this subsystem as

p(t, ε) = (x(t, ε), y(t, ε), γ(t))

where γ(t) is the auxiliary state that we introduced in the proof
of Theorem 2. We have just shown that the evolution of this
subsystem is governed by the alternate kinematic model

ṗ(t, ε) = εh1 (p(t, ε), ε) u1(t) + h2 (p(t, ε), ε) u2(t) (4)

where

h1 (p(t, ε), ε) =

⎡
⎢⎣

cos (θ(0, ε) + εγ(t))

sin (θ(0, ε) + εγ(t))
0

⎤
⎥⎦

h2 (p(t, ε), ε) =

⎡
⎣

0
0
1

⎤
⎦ (5)

and θ(0, ε) is the initial heading given by qstart , as before. For
convenience, we will abbreviate

c(t, ε) = cos (θ(0, ε) + εγ(t))

s(t, ε) = sin (θ(0, ε) + εγ(t))

so that

h1 (p(t, ε), ε) =

⎡
⎢⎣

c(t, ε)

s(t, ε)

0

⎤
⎥⎦ . (6)

Since p3(t, ε) = γ(t) no longer depends on ε, it is clear that we
have removed the feature of (3) that allowed us to conclude a
lack of controllability. We will see that the resulting subsystem
(4) is, in fact, controllable.

Before proceeding, note that the vector field h1 in (5) may be
expressed

h1 (p(t, ε), ε) = R(ε)

⎡
⎢⎣

cos (εγ(t))

sin (εγ(t))

0

⎤
⎥⎦

where

R(ε) =

⎡
⎢⎣

cos θ(0, ε) − sin θ(0, ε) 0

sin θ(0, ε) cos θ(0, ε) 0

0 0 1

⎤
⎥⎦ .

Therefore, if we apply the transformation

p′(t, ε) = R(ε)T p(t, ε)

then without loss of generality, it is always possible to assume
that θ(0, ε) = 0 for all ε.

B. Controllability By Polynomial Approximation

We will now prove that the reduced subsystem that is derived
in the previous section is ensemble controllable. We will do this
by using repeated bracketing to get higher order powers of ε
and by using polynomial approximation to construct arbitrary
vector flows. This approach is similar to what appears in [7] and
involves computations that are reminiscent of [11].

Theorem 3: The system (4) is ensemble controllable.
Proof: Taking Lie brackets, we have

[εh1 , h2 ] = ε

(
∂h2

∂p
h1 −

∂h1

∂p
h2

)

= 0 − ε

⎡
⎣

0 0 −εs
0 0 εc
0 0 0

⎤
⎦

⎡
⎣

0
0
1

⎤
⎦

= ε2

⎡
⎣

s
−c
0

⎤
⎦

and

[[εh1 , h2 ] , h2 ] = 0 − ε2

⎡
⎣

0 0 εc
0 0 εs
0 0 0

⎤
⎦

⎡
⎣

0
0
1

⎤
⎦

= −ε3

⎡
⎣

c
s
0

⎤
⎦

= −ε3h1 .
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Let us define

h3 =

⎡
⎣
−s
c
0

⎤
⎦

so that [εh1 , h2 ] = −ε2h3 . Repeating this process, we can pro-
duce control vector fields of the form ε2i+1h1 and ε2i+2h3 for
any i ≥ 0. Since we have assumed that U is symmetric and that
the affine hull of U is R

2 , then with piecewise-constant inputs
(i.e., a sufficient number of “back-and-forth” manuevers), we
can produce flows of the form

exp (a0εh1) · · · exp
(
ak−1ε

2k−1h1
)

= exp

(
k−1∑
i=0

aiε
2i+1h1

)

and

exp
(
b0ε

2h3
)
· · · exp

(
bk−1ε

2kh3
)

= exp

(
k−1∑
i=0

biε
2i+2h3

)

for freely chosen coefficients a, b ∈ R
k . Let

pstart(ε) = (xstart(ε), ystart(ε), γstart)

and

pgoal(ε) = (xgoal(ε), ygoal(ε), γgoal)

for any given continuous real-valued functions

xstart , ystart , xgoal, ygoal ∈ L2 ([1 − δ, 1 + δ], R)

and for any given γstart , γgoal ∈ S1 . Define

c = γgoal − γstart

and take
[

α(ε)

β(ε)

]
=

[
cos c sin c

− sin c cos c

] [
xgoal(ε) − xstart(ε)

ygoal(ε) − ystart(ε)

]

for all ε ∈ [1 − δ, 1 + δ], where continuity of α and β follows
from continuity of xstart , xgoal, ystart , ygoal . We can represent
the desired change in configuration by the flow

exp (β(ε)h3) exp (α(ε)h1) exp (ch2) .

The Stone–Weierstrass theorem [51] states that given η > 0 and
a continuous real function

ν(ε) : [1 − δ, 1 + δ] → R

there exists a polynomial function ρ(ε) such that

|ρ(ε) − ν(ε)| < η

for all ε ∈ [ε, ε]. An immediate corollary is that continuous
real functions on the domain [ε, ε] = [1 − δ, 1 + δ] for some
0 ≤ δ < 1 can be uniformly approximated either by an odd
polynomial or by an even polynomial. (This result would not be
true on an arbitrary domain, which is why we restrict δ < 1.)
As a consequence, we can choose a, b ∈ R

k so that

α(ε) ≈
k−1∑
i=0

aiε
2i+1

β(ε) ≈
k−1∑
i=0

biε
2i+2

for ε ∈ [1 − δ, 1 + δ], with error vanishing in k. The time com-
plexity of the resulting motion increases with k and with the
number of switches required to approximate flows along each
vector field ε2i+1h1 and ε2i+2h3 , but remains finite for any given
μ > 0. Our result follows. �

IV. APPROXIMATE STEERING ALGORITHM

In the previous section, we showed that the subsystem (4) is
ensemble controllable. Based on this result, we will now derive
an approximate steering algorithm for this subsystem. Although
the boundary conditions that are given to this algorithm could, in
general, be arbitrary continuous functions pstart(ε) and pgoal(ε),
for our application of interest—where (4) captures the range of
possible outcomes for a single unicycle—these functions are
always constant and have the form

pstart(ε) = (xstart , ystart , γstart)

pgoal(ε) = (xgoal, ygoal, γgoal)

where we may as well assume that γstart = γgoal = γ. If we
apply the transformation

[
Δx
Δy

]
=

[
cos γ sin γ
− sin γ cos γ

] [
xgoal − xstart
ygoal − ystart

]

then without loss of generality, we may assume that

pstart(ε) = (0, 0, 0)

pgoal(ε) = (Δx,Δy, 0) .

Finally, we assume that (1, 0) ∈ U and that (v, 1) ∈ U for some
v ≥ 0, hence also that (−1, 0), (−v,−1) ∈ U . We make this as-
sumption primarily for convenience. Scaling either input would
require only scaling the corresponding time for which it is ap-
plied, and taking the reflection −Δy would directly address the
case where (v,−1) ∈ U . However, the fact that it is possible to
“go straight” is important for the simplicity of our algorithm. If
(1, 0) /∈ U , then we will assume that the corresponding control
vector field is approximated by rapid switching, which is pos-
sible because the affine hull of U is R

2 . In any case, our model
applies unchanged to both a differential-drive robot (v = 0) and
a car-like robot (v �= 0).

A. One Motion Primitive With Piecewise-Constant Inputs

Consider the following input for ψ ≥ 0 and a′, b′ ∈ R:

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(v, 1) 0 ≤ t < ψ

(sgn a′, 0) ψ ≤ t < ψ + |a′|
(−v,−1) ψ + |a′| ≤ t < 3ψ + |a′|
(sgn b′, 0) 3ψ + |a′| ≤ t < 3ψ + |a′| + |b′|
(v, 1) 3ψ + |a′| + |b′| ≤ t < 4ψ + |a′| + |b′| .
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We call this input a motion primitive. If γ(0) = 0, then the result
of applying this motion primitive is to achieve

p(Δt, ε) − p(0, ε) =

⎡
⎢⎣

(a′ + b′)ε cos (εψ)

(a′ − b′)ε sin (εψ)

0

⎤
⎥⎦

in time

Δt = 4ψ + |a′| + |b′| .

With the input transformation

a′ =
a + b

2
, b′ =

a − b

2
for freely chosen a, b ∈ R, we can write this expression as

p(Δt, ε) − p(0, ε) =

⎡
⎢⎣

aε cos (εψ)

bε sin (εψ)

0

⎤
⎥⎦ .

We will denote this motion primitive by the triple (a, b, ψ) and
use it as the basis for our approximate steering algorithm.

B. Composition of Two Motion Primitives

Because our motion primitives leave γ invariant, we are free to
concatenate them. For example, consider the sequential applica-
tion of two primitives (a1 , b1 , ψ1) and (a2 , b2 , ψ2). If γ(0) = 0,
then the result is to achieve

p(Δt, ε) − p(0, ε) =

⎡
⎢⎣

a1ε cos (εψ1) + a2ε cos (εψ2)

b1ε sin (εψ1) + b2ε sin (εψ2)

0

⎤
⎥⎦

in time

Δt = (4ψ1 + |a′
1 | + |b′1 |) + (4ψ2 + |a′

2 | + |b′2 |)

where

a′
i =

ai + bi

2
, b′i =

ai − bi

2
for i ∈ {1, 2}. In fact, we can compose these two primitives in a
slightly different way that achieves the same result in less time.
Assume that ψ2 > ψ1 . Consider the following input:

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v, 1) 0 ≤ t < ψ1

(sgn a′
1 , 0) · · · ≤ t < · · · + |a′

1 |
(v, 1) · · · ≤ t < · · · + (ψ2 − ψ1)

(sgn a′
2 , 0) · · · ≤ t < · · · + |a′

2 |
(−v,−1) · · · ≤ t < · · · + (ψ2 + ψ1)

(sgn b′1 , 0) · · · ≤ t < · · · + |b′1 |
(−v,−1) · · · ≤ t < · · · + (ψ2 − ψ1)

(sgn b′2 , 0) · · · ≤ t < · · · + |b′2 |
(v, 1) · · · ≤ t < · · · + ψ2 .

It is easy to verify that p(Δt, ε) − p(0, ε) remains the same but
that

Δt = (|a′
1 | + |b′1 |) + (4ψ2 + |a′

2 | + |b′2 |)

Fig. 1. Two different ways to compose motion primitives (a1 , b1 , ψ1 = π/4)
and (a2 , b2 , ψ2 = π/2), where v = 1/2: (a) concatenated and (b) interwoven,
with the same result but lower execution time. The concatenation is shown in
(b) as a dotted line for comparison. Only the nominal path, corresponding to
ε = 1, is shown.

which is lower than before by 4ψ1 . Fig. 1 shows an example,
for which ψ1 = π/4, ψ2 = π/2, and v = 1/2.

C. Composition of Many Motion Primitives

We generalize our result of the previous section as follows.
Given φ > 0, consider a sequence of k + 1 motion primitives

(aj+1 , bj , ψj = jφ)

for j ∈ {0, . . . , k}, where we restrict ak+1 = b0 = 0. We have
indexed these primitives so that they are defined by the choice
of a, b ∈ R

k , where a = (a1 , . . . , ak ) and b = (b1 , . . . , bk ) as
usual. We compose these primitives as in Section IV-B, noting
that because ψ0 = 0, the resulting inputs begin with translation
and not with rotation. In particular, we have

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(sgn a′
1 , 0) 0 ≤ t < |a′

1 |
(v, 1) · · · ≤ t < · · · + φ

(sgn a′
2 , 0) · · · ≤ t < · · · + |a′

2 |
...

(v, 1) · · · ≤ t < · · · + φ

(sgn a′
k , 0) · · · ≤ t < · · · + |a′

k |
(−v,−1) · · · ≤ t < · · · + kφ

(sgn b′1 , 0) · · · ≤ t < · · · + |b′1 |
(−v,−1) · · · ≤ t < · · · + φ

(sgn b′2 , 0) · · · ≤ t < · · · + |b′2 |
...

(−v,−1) · · · ≤ t < · · · + φ

(sgn b′k , 0) · · · ≤ t < · · · + |b′k |
(v, 1) · · · ≤ t < · · · + kφ

(7)

where

a′ =
1
2

([
a
0

]
+

[
0
b

])
, b′ =

1
2

([
a
0

]
−

[
0
b

])
.
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As before, it is easy to verify that

p(Δt, ε) − p(0, ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k∑
j=1

aj ε cos (ε(j − 1)φ)

k∑
j=1

bj ε sin (εjφ)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Δt = 2(k − 1)φ +
k∑

i=1

(|a′
i | + |b′i |) . (8)

As in Section III, our problem has been reduced to function
approximation. Given μ > 0 and (Δx,Δy) ∈ R

2 , we need to
find φ > 0 and a, b ∈ R

k for sufficiently large k so that
∣∣∣∣∣∣
Δx −

k∑
j=1

aj ε cos (ε(j − 1)φ)

∣∣∣∣∣∣
≤ μ

and
∣∣∣∣∣∣
Δy −

k∑
j=1

bj ε sin (εjφ)

∣∣∣∣∣∣
≤ μ

for all ε ∈ [1 − δ, 1 + δ]. The resulting input (7) would be a
solution to the approximate steering problem for (4).

D. Achieving Error of a Particular Order

We can express the result

Δp1(ε) = p1(Δt, ε) − p1(0, ε)

Δp2(ε) = p2(Δt, ε) − p2(0, ε)

of applying (7) as the Taylor series about ε = 1:

Δp1(ε) = Δp1(1) +
(

∂Δp1

∂ε

∣∣∣∣
ε=1

)
(ε − 1) + · · ·

Δp2(ε) = Δp2(1) +
(

∂Δp2

∂ε

∣∣∣∣
ε=1

)
(ε − 1) + · · · .

Each series has the form

Δp1(ε) =
k∑

i=1

ri (ε − 1)i−1 + O(|ε − 1|k )

Δp2(ε) =
k∑

i=1

si (ε − 1)i−1 + O(|ε − 1|k )

where we collect r = (r1 , . . . , rk ) and s = (s1 , . . . , sk ) so that
r, s ∈ R

k . Explicit formulas for r and s are given by

r = Aa

s = Bb (9)

where the matrices A,B ∈ R
k×k have elements

Aij =
1

(i − 1)!

(
∂i−1 (ε cos (ε(j − 1)φ))

∂εi−1

∣∣∣∣
ε=1

)

Bij =
1

(i − 1)!

(
∂i−1 (ε sin (εjφ))

∂εi−1

∣∣∣∣
ε=1

)

for all i, j ∈ {1, . . . , k}. Note that A and B do not depend on ε.
To approximate Δx = 1 and Δy = 1 with error that is of order
k in |ε − 1|, we require only a solution a, b to the system of
linear equations (9) that results in

r = [ 1 0 · · · 0 ]T

s = [ 1 0 · · · 0 ]T .

Both A and B are square matrices; therefore, assuming both
are nonsingular (and well-conditioned)—which will hold for
almost all choices of the angle φ—(9) has a unique solution.
An immediate consequence is that achievable error decreases
exponentially in the number k + 1 of primitives, a result that
was shown empirically in [26].

By linearity, if the parameters a and b achieve

(Δp1 ,Δp2) = (1, 1)

then the scaled parameters aΔx and bΔy achieve

(Δp1 ,Δp2) = (Δx,Δy)

for arbitrary Δx and Δy. In other words, scaling a single,
precomputed maneuver gets you everywhere for free. Subse-
quently, we need only compute

a′ =
1
2

([
a
0

]
Δx +

[
0
b

]
Δy

)

b′ =
1
2

([
a
0

]
Δx −

[
0
b

]
Δy

)
.

One advantage of this strategy over the one used in [26] is that we
no longer have to sample ε in order to compute the parameters
a and b. Doing so had previously introduced approximation
error that was difficult to quantify. Now, the series expansion
gives us an explicit bound on this error. In particular, to achieve
a tolerance μ > 0, we simply choose any integer k > 0 that
satisfies δk−1 < μ.

We can also quantify the tradeoff between the time cost Δt
and the resulting uncertainty. The total elapsed time to reach
(Δx,Δy) with kth-order error in |ε − 1| is given by (8). Direct
computation verifies that |a′

i | and |b′i | decay rapidly with i;
therefore, the term 2(k − 1)φ dominates the elapsed time. As
a consequence, the time cost is O(k). Note that if switching is
required to generate (u1 , u2) = (1, 0)—i.e., if (1, 0) /∈ U—this
will only scale the cost by a constant factor.

Finally, we consider the total distance traveled in the
workspace. If ε = 1, this distance is given by

d(Δx,Δy) = 2(k − 1)φv +
k∑

i=1

(|a′
i | + |b′i |) .

We may compute an upper bound on d by solving the following
convex optimization problem (for example, as in [52]), which
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Fig. 2. Ensemble with ε ∈ [0.8, 1.2] moving a unit distance in the x direction
achieving fourth-order error in |ε − 1|, which corresponds to a maximum error
bound of 0.23 = 0.008. Thin red lines show the path followed for particular
values of ε. The actual robot follows only one of these paths. Thick black lines
show the entire ensemble at instants of time.

is linear in the decision variables Δx and Δy:

minimize d(Δx,Δy)

subject to |Δx| ≤ 1

|Δy| ≤ 1.

Call the solution to this problem dmin . Recall that ε ∈ [1 −
δ, 1 + δ] and 0 ≤ δ < 1; therefore, the distance traveled for any
ε is at most 2dmin . As a corollary, we know that (x(t, ε), y(t, ε))
remains always inside a ball of radius 2dmin during the applica-
tion of our steering algorithm. This interesting result indicates
that it might be possible to prove some form of small-time local
controllability as the basis for extending our work from steering
to motion planning (for example, as in [53] and [54]), although
it is not obvious yet how to proceed.

Figs. 4 and 5 provide pseudocode that implements our ap-
proximate steering algorithm. We emphasize that this algorithm
produces an open-loop input trajectory that neither requires nor
takes advantage of sensor feedback.

E. Results in Simulation

Fig. 2 shows the results of applying our approximate steering
algorithm to an ensemble control system of the form (4) for
which v = 0, δ = 0.2, and (Δx,Δy) = (1, 0). In this example,
we chose k = 4 so that maximum error is expected to be O(δ4).
Equivalently, we expect that

0.008 = δ3 > max
ε∈[1−δ,1+δ ]

{Δp1(ε) − Δx}

0.008 = δ3 > max
ε∈[1−δ,1+δ ]

{Δp2(ε) − Δy} .

We chose φ = π/2. As a consequence, the matrices A and B
have a very simple form:

A =

⎡
⎢⎢⎢⎣

1 0 −1 0

1 −π/2 −1 3π/2

0 −π/2 π2/2 3π/2

0 π3/48 π2/16 −9π3/16

⎤
⎥⎥⎥⎦

Fig. 3. Example trajectories for k = 4 and φ = π/2. All of them are scaled
versions of the maneuver shown in Fig. 2. Thin red lines are particular values
of ε, and thick black lines are the entire ensemble at instants of time.

and

B =

⎡
⎢⎢⎢⎣

1 0 −1 0

1 −π −1 2π

−π2/8 −π 9π2/8 2π

−π2/8 π3/6 9π2/8 −4π3/3

⎤
⎥⎥⎥⎦ .

The linear equations (9) can be solved exactly to produce

a =

⎡
⎢⎢⎢⎣

1 + (2/π2)

3
(
8 + 3π2

)
/
(
4π3

)

2/π2

(
24 + π2

)
/
(
12π3

)

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

(9/8) +
(
1/π2

)
(
6 + 4π2

)
/
(
3π3

)

(1/8) + (1/π2)(
6 + π2

)
/
(
6π3

)

⎤
⎥⎥⎥⎦ .

We also compute exactly the bound on total distance traveled,
in this case, which is achieved when (Δx,Δy) = (−1,−1):

dmin =
9
4

+
6 + π(8 + 3π)

2π3 ≈ 3.23.

We verify in simulation that the maximum error is 0.003 and
that the distance traveled is 2.41, both satisfying our predicted
bounds. Fig. 3 shows the same precomputed motion primitive
scaled to reach a variety of goal configurations.

V. HARDWARE EXPERIMENTS

In this section, we apply our approximate steering algorithm
to a differential-drive robot with unknown but bounded wheel
radius. First, we describe the robot that we used. Then, we show
that (2) is an appropriate model of this robot. Finally, we show
the results of hardware experiments.
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Fig. 4. Algorithm that we use to precompute a motion primitive.

A. Experimental Setup

Fig. 6 shows the robot that we used in our experiments. It is a
differential-drive robot with a caster wheel in front for stability.
It moves on a flat tile floor and uses only dead reckoning for
navigation. In particular, the robot runs a feedback control loop
to read the wheel encoders, update a dead-reckoning position
estimate, and regulate the speed of each motor. Although we
use no other sensors for feedback control, global position data
are available from an off-board vision system for later analysis.
This vision system records pose information at 27 Hz with a
position accuracy of 2 cm and an orientation accuracy of 1◦.

Before conducting our experiments, we applied a standard
calibration procedure to find the effective wheelbase and wheel
radius in order to reduce systematic dead-reckoning error [17].
The calibration was done with wheels of diameter 12.7 cm. How-
ever, these wheels are interchangeable—in our experiments, we
used four sets that varied between 10.16 and 15.24 cm in diam-
eter, as shown in Fig. 7. We did not recalibrate for these other
wheels, and assumed that the wheel diameter was unknown but
bounded in the set [10.2,15.2] or, in other words, the set [0.8,1.2]
relative to the nominal diameter 12.7 cm.

B. Application of the Model to a Differential-Drive Robot

We will show that

q̇(t) = ε (g1(q(t))u1(t) + g2(q(t))u2(t))

is a valid kinematic model of our robot, where

g1(q) =

⎡
⎣

cos q3
sin q3

0

⎤
⎦ and g2(q) =

⎡
⎣

0
0
1

⎤
⎦ .

It suffices to show that the forward speed v and turning rate ω of a
differential-drive robot with unknown but bounded wheel radius

Fig. 5. Our approximate steering algorithm. It acts only to scale the primitive
generated by the subroutine COMPUTEPRIMITIVE, which need only be called
once for given φ and k. We recommend choosing φ = π/2 and the smallest
integer k such that δk−1 < μ for a given tolerance μ > 0.

Fig. 6. Differential-drive robot used for experimental validation.



BECKER AND BRETL: APPROXIMATE STEERING OF A UNICYCLE UNDER BOUNDED MODEL PERTURBATION USING ENSEMBLE CONTROL 589

Fig. 7. Four wheel sizes used for experimental validation. These wheels are
10.16, 10.48, 12.7, and 15.24 cm in diameter.

Fig. 8. Ground truth data gathered from the camera system. Five runs for
each wheel set are shown. Loops at the corners are artifacts from the camera
system. Red, gray, blue, and black plots correspond to 10.16-, 10.48-, 12.7-, and
15.24-cm wheels, respectively. Units are in meters.

are given by v = εu1 and ω = εu2 , respectively, for control
inputs u1 , u2 ∈ R. Recall that for wheel radius r and wheel
separation l, the forward speed and turning rate of a differential-
drive robot are given by

v =
r(ωR + ωL )

2
and ω =

r(ωR − ωL )
l

where ωR and ωL are the angular velocities of the right and
left wheels, respectively. Assume that the wheel radius, which
is a positive constant, is unknown but bounded according to
r ∈ [rmin , rmax]. If we define

r̄ =
rmax + rmin

2
and δ =

rmax − rmin

2r̄

then we can write r = εr̄ for some ε ∈ [1 − δ, 1 + δ] so that

v = ε

(
r̄(ωR + ωL )

2

)
and ω = ε

(
r̄(ωR − ωL )

l

)
.

This expression simplifies if we select wheel angular velocities

ωR =
2u1 + bu2

2r̄
and ωL =

2u1 − bu2

2r̄

for any given u1 , u2 ∈ R so that

v = εu1 and ω = εu2

and we have our result.

C. Experimental Results

Fig. 8 shows the results of our experiments, which suc-
cessfully validated our approach. The start configuration was

Fig. 9. Ending position for each run. Green “+” for goal position, “×” for
expected ending position under zero odometry drift, “o” for actual ending posi-
tions. Red, gray, blue, and black plots correspond to 10.16-, 10.48-, 12.7-, and
15.24-cm wheels. Units are in meters (note the zoomed scale).

TABLE I
IN-GROUP ERROR MEASUREMENTS

(0, 0, 0). The goal configuration was (4.25 m, 2.25 m, 0). The
value of k was chosen to achieve an error tolerance of 2 cm.
We applied the algorithm described in Section IV to generate
a single-input trajectory that was applied in open loop. Five
runs were recorded for each wheel size. All of the resulting
trajectories reached a small neighborhood of the goal position,
as shown in Fig. 9, and reported in aggregate in Table I. The
size of this neighborhood is slightly larger than the predicted
tolerance of 2 cm. This error is due largely to drift as a result of
wheel slip, gear backlash, surface irregularities, wheel flex, and
other disturbances. Another contributing factor is that different
wheels are made of different materials. The 10.48-cm wheels
are of aluminum with rubber o-rings stretched over the rim,
while the other wheels are of Acrylonitrile–Butadiene–Styrene
plastic with a molded rubber traction ring on the rim. The edge
of each plastic wheel has a rectangular cross section, making
the effective wheel base slightly larger than for the aluminum
wheels. The vision system also adds to observed error (although
we emphasize that this vision system was used only for data col-
lection and not for closed-loop feedback in our experiments).
In particular, ground truth position information was calculated
from fiducial markers on the top of the robot. These markers
were level and centered over the wheelbase for the 10.48-cm
wheels, but tilted by 10◦ for the largest wheels.

VI. CONCLUSION

In this paper, we applied the framework of ensemble con-
trol theory to derive an approximate steering algorithm that
brings a nonholonomic unicycle to within an arbitrarily small
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neighborhood of any given Cartesian position despite model
perturbation that scales both the forward speed and the turn-
ing rate by an unknown but bounded constant. This algorithm
has trivial computational complexity, requiring only the solu-
tion of linear equations. We have validated our approach using
a differential-drive robot with unknown but bounded wheel ra-
dius and showed the results with hardware experiments. We
hope that these results stimulate interest in ensemble control
theory and provoke a new line of inquiry that may ultimately
lead to practical application in robotics.

There are several opportunities for future work. For example,
we saw in Section IV-D that the unicycle remains inside a ball of
bounded radius during the application of our steering algorithm.
This result indicates that it might be possible to prove some form
of small-time local controllability as the basis for extending
our work from steering to motion planning (for example, as
in [53] and [54]). Similarly, we noted in Section I that the plate–
ball system introduced by Brockett and Dai [20] is ensemble
controllable under perturbation in ball radius. This result may
suggest a new approach to robust manipulation of “toleranced
parts” in automated assembly [24], [25] and hints that many
other classical systems may also be ensemble controllable under
bounded model perturbation. Finally, although the approximate
steering algorithm that we describe in this paper produces a
feasible open-loop input trajectory, this trajectory is by no means
optimal. Ongoing work by ourselves and others [55] seeks to
address this problem.
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