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Abstract— Research over the last decade has shown that
brain-computer interfaces (BCI) based on electroencephalog-
raphy (EEG) can provide an alternative input paradigm for
both clinical and healthy populations. Currently, the majority
of BCI paradigms rely on a limited number of brain potentials;
thus there remain many EEG signals to be explored for
BCI applications. One such signal is the N2pc event-related
potential (ERP). The N2pc is an ERP elicited 150ms to 350ms
post-stimulus onset in response to target detection in visual
search tasks. During this time window, target detection causes
a negative deflection in the ERPs measured contralaterally
to the target, allowing the lateralization of the target to be
determined. Here we explore the feasibility of an N2pc-based
BCI paradigm by analyzing the classification performance of
participants based on data collected during an N2pc elicitation
task. We quantify performance as a function of two variables;
channel selection and the number of trials averaged together
to obtain the ERP. Preliminary results indicate that with as
few as three trials, the N2pc can be classified at nearly 90%
accuracy in some individuals. These results could directly lead
to the development of a new BCI paradigm, which we plan
to realize in future work through the construction of a speller
interface.

I. INTRODUCTION

Brain-computer interfacing (BCI) seeks to create a direct
neural link between humans and computers, generally via the
measurement of brain potentials using electroencephalogra-
phy (EEG), analyzed with signal classification techniques.
When successful, this neural link serves as an alternative
input device that can be used to communicate or effect behav-
ioral outcomes. Although other neural imaging techniques
may be used to control a BCI [16], most rely on EEG due
to its low cost, ease of use, and relative portability. Since
EEG signals are based on the underlying neural activities,
they can be measured completely independently of motor
function. This allows EEG-based BClIs to restore function in
those with spinal damage, or even to help amyotrophic lateral
sclerosis (ALS) patients, who may be experiencing locked-in
syndrome, establish a communication link with the outside
world [11]. In addition to their clinical uses, EEG-based BCIs
have the potential to enable new methods of interaction with
computers for healthy individuals [14].

Although there have been more than 1100 cumulative BCI
publications as of 2010 [7], the set of EEG signals utilized
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in these studies has remained limited. There has been a
tendency to focus on three types of EEG signals: the P300
[6], motor-imagery [2], and steady-state visually evoked
potentials (SSVEP) [1]. While these signals are efficacious
due to their high signal-to-noise (SNR) ratio, 50 years of
event-related potential (ERP) research have elucidated a
much wider range of prospective BCI control signals. One
such signal is the N2pc, an ERP related to visual search ERP,
that we investigate here [12].

The N2pc is a signal related to the lateral orienting of
attention in visual search tasks. First described by Luck
[12], its functional significance is still debated [13], but
it has been classically linked to the suppression of task-
irrelevant distractors [12]. The signal is primarily observed
in electrode sites over the occipital lobes contralateral to the
target. Although its latency varies based on the task, it is
generally observed around 200ms after target presentation
[12]. Localization studies using magnetoencephalography
have revealed that the N2pc is actually made up of two
subcomponents. The early component is primarily generated
in the parietal lobe, but is not seen in EEG signals. The latter
component generates the N2pc ERP and is localized to the
lateral posterior region of the cortex, which has been linked
to the filtering of distracting items [8]. The discovery of
the N2pc has enabled research on the mechanisms of visual
search and target selection [5], but has not been explored in
the context of BCI applications. Since the N2pc effectively
identifies the visual hemifield containing the desired target,
classification of the N2pc could be used as a form of binary
search [4].

One advantage of the N2pc over other EEG potentials used
for BClIs is that it is an inherently based on covert attention.
Whereas SSVEPs and P300 can utilize covert mechanisms,
their performance is greatly degraded in these situations.
Using overt attentional signals, a recent study by Volosyak
[15] reported an average accuracy of 96.79% to identify five
classes. By comparison, in a study of covert classification
of SSVEP signals by Kelly [9], participants only achieved
a mean accuracy of 71% with two classes. In cases that
require the covert orienting of attention, such as in patients
with “locked-in” syndrome, one approach to improving this
limited performance is through the use of alterative EEG
paradigms. This is one of the primary motivations of the
development of an N2pc BCI.

This work explored the development of a BCI based on
the N2pc ERP. First, we elicited the N2pc using an existing
paradigm developed by Eimer [5]. Then we conducted an
analysis of classification performance as a function of (1) the
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channels used and (2) number of ERP trials (which we term
repetitions) to ascertain the feasibility of an N2pc BCI. ERP
signals are inherently noisy measurements, it is not likely
that the N2pc will be reliably classified in single trials. In
order to circumvent this limitation, it is common for multiple
repetitions be averaged together to increase SNR. Before a
real-time BCI can be developed, it is important to understand
how many repetitions are necessary to achieve acceptable
performance with the N2pc. Following the classification
analysis we then discuss the potential implications of our
initial results and give recommendations on how to further
develop a BCI speller interface based on this paradigm.

II. METHODS
A. Participants and Setup

Four right-handed college-aged participants (three males,
one female) provided data for the purpose of this pilot study.
All participants were members of the Bretl BCI laboratory.
A James Long 128-channel EEG amplifier (model TCP-
128BA), set at 10,000 gain, was used to collect continuous
EEG sampled at 128Hz, filtered from 0.3 to 30Hz, from 10-
5 channels FPZ, C3/4, P7/8, P5/6, P3/4, Pz, PO3/4, PO7/8,
01/2, and Oz. For artifact detection, six electrooculogram
(EOG) electrodes were used: two on the outer canthus of
each eye (to detect horizontal eye movements), and two
above and below each eye (to detect blinks). The electrodes
were all referenced online to the right mastoid, but re-
referenced before analysis to the average of both mastoids.
The ground electrode was situated on the right earlobe.

B. Experimental Design

The purpose of the first experiment was to determine how
many trials of EEG data are necessary for reliable detection
of the N2pc. We used the design of Eimer [5] to gather
data for classification. By choosing to work with a proven
experimental design, we maximized the likelihood of N2pc
elicitation in our initial experiments.

A ring of numbers (integers from 2-9) was placed in a
circle around a central fixation cross. The radius of the ring
subtended a 2.7° angle. Two digits were randomly selected
to serve as the target and distractor. Each of these two
digits was randomly colored red, green, or blue, while all
other digits and the fixation-cross remained white. Red digits
corresponded to targets, whereas blue and green were both
distractors. The subjects were instructed to hit “K” on the
keyboard if the red digit was odd, “J” if the red digit was
even, and no key if there was no red digit. Key presses were
discarded, as they do not pertain to the N2pc; they were used
just to increase subject engagement in the task.

Each trial consisted of three phases: stimulus display,
fixation, and blink. The stimulus display lasted 150ms before
being replaced by a white fixation cross for 1000ms which
was then followed by a red fixation cross for an additional
1850ms. Subjects were instructed to blink during the red
cross in order to avoid artifacts in the data window. Each
experimental session contained four blocks of 150 trials, but
only 66% of these trials contained targets. Of those target
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Fig. 1. Grand average ERP from four participants across 968 trials based

on data from channels P7 and P8. The N2pc can be seen as a positivity
in the channel that is contralateral to the desired stimulus. The peak of the
difference wave has a latency of approximately 300ms after stimulus onset
(blue dashed line). Stimulus offset is denoted as the red dashed line. For

the purpose of presentation, the data in these figures are lowpass filtered to
15Hz.

trials, only 75% contained lateralized targets. This means
that approximately 50% of all the trials had targets presented
laterally that could be used for analysis. The lateralization
and presence of a target was determined randomly.

C. Pre-Processing

For the purpose of data analysis and artifact rejection
(body movements, blinks, blocking, power-line noise, and
horizontal eye movements), individual trials were first ex-
tracted from the raw data. These trial periods include a
time period of 200ms prior to and 1000ms following stim-
ulus onset. Every channel of the 1200 collected trials was
heuristically analyzed by the experimenters, trials judged
to contain artifacts were rejected from further analysis.
Following artifact rejection 968 trials were retained. This
represents roughly 80.67% of the trials presented.

III. RESULTS

A. ERP Analysis

For ERP analysis, trials from pairs of hemispherically
lateralized opposing channels were unified into ipsilateral
and contralateral data sets. For example, channels P7 and
P8 are a two channels with opposite lateralization on the
scalp, and would comprise one such pair. These data sets
were then base-lined to the average voltage in the 200ms
preceding stimulus onset. All trials across all participants
were then collapsed into a grand average effect of ipsilateral
versus contralateral target presentation. The grand average
ERPs for the channel pair of P7/P8 are plotted in Figure 1.
Using a Student T-test, the period of 250-350ms following
stimulus onset was found to be significantly different (p
<.01) between ipsilateral and contralateral electrode sites.
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Fig. 2. LDA classifier performance as a function of the number of trials (n)
averaged together. Results are plotted for two channels (dash-dotted line,
P7 and P8), eight channels (dashed line, P7, P8, PO7, PO8, PO3, PO4, O1,
and 02), and all recorded channels (solid line).

B. Classification Analysis

The goal of classification was to determine the lateraliza-
tion of the N2pc. Based on the significant differences seen
in the grand average ERPs, the mean voltages in the 250-
300ms timeframe following stimulus onset was chosen as a
classification feature. Visual inspection revealed this feature
to be consistent across channels P7/8, PO7/8, PO3/4, and
01/2.

1) Classification Across Participants: 40 (20 target left
and 20 target right) random training sets were taken from the
data (without replacement) obtained for all subjects and used
to train a classifier utilizing Linear Discriminant Analysis
(LDA). These training sets were comprised of n randomly
selected trials, which were then averaged together. Another
40 (20 target left and 20 target right) sets of n averaged
samples were then randomly taken (without replacement)
from the complete data set and used as a test set. This process
was then repeated 500 times. Figure 2 shows the average
classification results for n = 1:12.

2) Classification Within Participants: Further analysis of
the individual participants proceeded in a similar manner
to that used for the combined data set; this is plotted in
Figure 3. 30 training trials and 30 test trials were selected
at random and classification was obtained using LDA. There
were a greatly reduced number of trials for each individual
as compared with the combined data set; as such, the
classification performance was compared within participants
for n = 1:3 trials per average. Since performance was seen
to vary between participants, it was logical to assume that
the spatial distribution of the N2pc would vary as well.
Each possible combination of channels was searched to find
the set of channels that yielded the highest classification
performance. The process was then repeated 500 times to
obtain average performance.

TABLE I
LDA HIGHEST CLASSIFICATION ACCURACY AND ASSOCIATED

CHANNELS BY PARTICIPANT

2 Repetitions Channels 3 Repetitions Channels
SO1 79.3% P8 PO7 OZ 83.5% P8 PO7 OZ
S02 84.3% C4 PO4 OZ 89.7% C4 PO4 OZ
S03 71.8% P8 PO7 75.3% P8 O1
S04 60.5% C4 P7 OZ 64.4% P5 P7 OZ
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Fig. 3. Classification accuracy using LDA for each participant as a function
of the number of trials (n) averaged together. Results are plotted for all
channels (darkest color), two channels (P7 and P8, second darkest), eight
channels (P7, P8, PO7, POS8, PO3, PO4, O1, and O2), and the best channels
as revealed through search (lightest color).

IV. DISCUSSION

Our results, although preliminary, provide evidence that
the N2pc can be classified at an accuracy that compares
well with other BCIs based on covert attention [9]. Although
expected, the results also demonstrate that the correct clas-
sification of a target character is a function of the number
of repeats and the channels selected for classification. The
performance in our experiment is subject dependent, with
two participants achieving better than 75% accuracy with
an average of only three trials across the eight channels
with visible differences in the N2pc. One of the other two
participants, achieved an accuracy only marginally better
than chance, while the last participant achieved less than
70% accuracy using three trials. These differences could be
attributable to differences in the ease of detection of the N2pc
response, but may also be the result of other factors. By
searching the available channels for the best possible set of
electrodes, we were able to further improve classification
performance to nearly 90% in one participant, and three of
four participants achieved greater than 75% accuracy. The
classification results for the combined data set with higher
numbers of repetitions continue to improve; future work
should acquire more data for each individual participant.
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Considering other potential limitations and suggestions for
improving the current study. Our task was limited to the
detection of colored digits and participants reported that it
was boring. This may have negatively impacted some of
the recordings, motivational factors such as engagement and
reward have previously been shown to have an impact on
the amplitude of the N2pc [10]. A wider range of electrodes
and reference locations should be considered, based on the
data we obtained from this study. More channels from the
parietal region of the scalp could improve performance by
allowing the clearest possible signals to be extracted from
the scalp. Changes in harware may also improve recordings,
tin electrodes were used in the present work, in the future the
use of non-polarizing Ag/AgCl electrodes will be explored
as well as different amplifier filter settings.

Additional research is needed to determine classification
performance in an experimental setting that better simulates
target applications. For text communication, this would mean
using the desired alphabet with the appropriate number of
characters. It has been previously demonstrated that the
amplitude of the N2pc is positively correlated with dis-
play size [13]. Since there are more letters in the English
alphabet than numbers used here, this might directly (and
positively) impact the amplitude of our measured potentials.
The N2pc is also sensitive to stimulus duration [3], with
shorter stimulus durations leading to high amplitudes. The
faster an application could be run, the more information
that can be transferred per unit time. A study that quantifies
the differences in N2pc amplitude across participants as a
function of display time would be beneficial to application
design.

In terms of applications of these results, it seems plausible
that the N2pc could be used to drive the selection process
in a binary search. By displaying half of an alphabet on
the left side and half on the right side, the N2pc could be
used to determine which side the target is on. Following
classification, we could decrease our search space to the side
designated by the N2pc and thus, in a manner similar to a
regular binary search, arrive at the appropriate letter. One
difficult issue that has not been addressed by this work relates
to error detection. If the spelling system were to misclassify
a character and eliminate it from the visual cue, how would
the user communicate that misclassification? In the simple
binary classification scheme we propose, it would be very
difficult to determine when the classifier had made a mistake,
because the misclassified letter would disappear from the
display. Misspellings could be left uncorrected, which could
be aggravating to the user, but likely would not make the
system unusable. Another option would be to create a hybrid
BCI system that seeks to detect errors through classification
of another type of ERP, the feedback related negativity. This
might also argue for a different type of search scheme.

There are many variables still to be considered, yet this
covert attentional paradigm achieved nearly a 90% classifica-
tion rate in one of the participants with as few as three trial
repetitions. If trials were to proceed at 1.5s each, it could
be assumed that 12 or more classification decisions could

be made every minute. If five selections were required per
character, spelling rates of greater than two characters per
minute could be achieved. This spelling rate is comparable
to the fist iterations of the p300 speller by Farwell and
Donchin [6]. Improvements to the system could make it a
competitive alternative to existing EEG BCI paradigms and
enable new types of BCI applications. Future work will focus
on refining the classification schemes presented here and
building towards a real-time system.
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