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An SSVEP-Based Brain—Computer Interface for
Text Spelling With Adaptive Queries That
Maximize Information Gain Rates
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Abstract—This paper presents a brain-computer interface for
text entry using steady-state visually evoked potentials (SSVEP).
Like other SSVEP-based spellers, ours identifies the desired input
character by posing questions (or queries) to users through a vi-
sual interface. Each query defines a mapping from possible charac-
ters to steady-state stimuli. The user responds by attending to one
of these stimuli. Unlike other SSVEP-based spellers, ours chooses
from a much larger pool of possible queries—on the order of ten
thousand instead of ten. The larger query pool allows our speller
to adapt more effectively to the inherent structure of what is being
typed and to the input performance of the user, both of which
make certain queries provide more information than others. In
particular, our speller chooses queries from this pool that maxi-
mize the amount of information to be received per unit of time, a
measure of mutual information that we call information gain rate.
To validate our interface, we compared it with two other state-of-
the-art SSVEP-based spellers, which were re-implemented to use
the same input mechanism. Results showed that our interface, with
the larger query pool, allowed users to spell multiple-word texts
nearly twice as fast as they could with the compared spellers.

Index Terms—Assistive technology, brain—computer interfaces,
brain modeling, electroencephalography, user interfaces.

I. INTRODUCTION

HE DEVELOPMENT of electroencephalogram (EEG)-

based brain—computer interfaces (BCI) for text entry has
exploded over the past decade [1]. These interfaces create a di-
rect neural link between a human user and a computer, allowing
the user to type without a keyboard or physical movements. One
common input mechanism, which we consider in this paper,
is the steady-state visually evoked potential (SSVEP). In an
SSVEP-based speller, users are presented with a set of visual
targets that are associated with possible characters. These tar-
gets blink on and off at slightly different but fixed frequencies.
By attending to a particular target, the user elicits phase-locked
EEG activity at the corresponding frequency. Measurement of
this activity allows the computer to detect the target to which
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the user is attending, hence the user's desired character. While
it is not within our scope to discuss the relative merits of BCI
and non-BClI text entry, we note that SSVEP may remain appli-
cable even when users have no control over gaze (e.g., as with
“locked-in” syndrome). Attentional focus that is independent of
visual focus, also elicits SSVEPs [2].

Most existing SSVEP-based spellers have fewer visual tar-
gets than possible characters. As a consequence, the user must
attend to a sequence of targets in order to type a single char-
acter. For example, the SSVEP-based spellers of both Volosyak
[3] and Cecotti [4] allow 28 possible characters—the standard
alphabet, space, and delete—but have only five targets. The in-
terface of Volosyak [3] arranges characters in a grid, associates
four targets with cardinal directions (left, right, up, down) in
which to move a cursor in this grid, and interprets the fifth
target as selecting the character at the current location of the
cursor. The interface of Cecotti [4] arranges all characters ex-
cept delete in a static hierarchical menu with a decision between
three groups at each level of the hierarchy (three groups of nine
characters, then of three characters, and finally of one character),
associates a target with each group, associates the fourth target
with delete, and interprets the fifth target as moving up in the
hierarchy.

When discussing these two interfaces, we find it helpful to
regard each presentation of visual targets as a question or query
posed to the human user. Each query defines a mapping from
possible characters to visual targets, in the sense that there is a
correct choice of target to which the user must attend in order to
specify a given character most quickly. The queries of Volosyak
[3] ask which direction the desired character is with respect to
the cursor. The queries of Cecotti [4] ask which of three groups
contains the desired character.

In this paper, we present a new SSVEP-based speller that is
similar to the ones of Volosyak [3] and Cecotti [4] but that poses
a different set of queries. These queries are of two types. A range
query [Fig. 1(a)] asks which of five ordered groups of characters
(e.g., “delete” through B, C through K, L through M, N through
T, and U through “space”) contains the desired character, by as-
sociating a target with each group. A character query [Fig. 1(b)]
asks which of four ordered characters (e.g., C, F, G, and S)—if
any—is the desired character, by associating a target with each
one and by interpreting the fifth target as “none of them.”

What is important about these two new types of queries is
their variety. There are 2925 distinct range queries and 20475
distinct character queries, meaning that our interface has a total
of 23400 queries from which to choose. You might say that our
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<ABCDEFGHIJKLMNOPQRSTUVWXYZ_>

COMP

<ABCDEFGHIJKEMNOPQRSTUVWXYZ_>

(@)

COMP

(b)

Fig. 1. Examples of the two types of queries posed by our speller: (a) range queries and (b) character queries. In each case, targets are arranged horizontally at
the top of the screen (the white boxes) and text appears along the bottom. (a) Range query posed after spelling “COMP.” (b) Character query posed after spelling

“COMP.”

interface has a query pool of size 23400. In contrast, the inter-
face of Volosyak [3] has a much smaller query pool of size 28,
equal to the number of characters in the grid. Similarly, the in-
terface of Cecotti [4] has a query pool only of size 13, equal to
the number of possible groupings of characters in the static hi-
erarchical menu.

The reason that variety is important is that not all queries
are equally informative. Language has an inherent structure
that—depending on context—makes certain characters much
more likely than others. In principle, larger query pools allow
better adaptation to this structure. They give an interface the
freedom to pick “the right question.”

Indeed, our SSVEP-based speller chooses queries that explic-
itly maximize the amount of information to be received per unit
of time about the desired character, a measure of mutual infor-
mation that we call information gain rate (IGR). IGR is sim-
ilar to other measures of mutual information like the commonly
used information transfer rate (ITR) [5]-[7] and the less well
known Nykopp bit rate [8]. The reason we use a new measure
in this paper is that IGR—unlike ITR, for example—does not
assume that each visual target is equally likely to be selected
within a given time window. Instead, IGR takes into account
the expected input performance of each user (characterized by
selection accuracy and selection latency) as well as a proba-
bilistic language model. We emphasize that IGR and the models
that it takes into account are not in direct competition with the
query pool. Rather, if the query pool gives us the freedom to
pick the right query, IGR offers our interface the means to select
that query. This choice of measure distinguishes our interface
from others that also have larger query pools, like the motor-im-
agery-based speller of Blankertz et al. [9] and the P300-based
speller of Ma et al. [10]—although, these other interfaces are
harder to compare directly due to their use of input mechanisms
other than SSVEP.

We acknowledge that many factors affect the performance of
an SSVEP-based speller (e.g., the classification rate [11], [12],
the stimulus design [13]-[15], and the layout of the interface
[16], [17]). Larger query pools may also necessitate the use of
serial visual search strategies by the participant, resulting in
prolonged selection latencies. Nonetheless, empirical results
with six qualified subjects showed that our SSVEP-based
spelle—with the larger query pool and with IGR as the per-
formance measure to be maximized—allowed users to spell

multiple-word texts nearly twice as fast as they would with the
SSVEP-based spellers of Volosyak [3] and Cecotti [4].

In what follows, we first present our new speller (Section II).
Next, we describe the experimental comparison to existing
spellers (Section III) and give the results of this comparison
(Section IV). Finally, we conclude by discussing the importance
of these results with respect to the design of BCI text-entry
systems (Section V).

II. DESIGN OF OUR SPELLER

Our SSVEP-based speller allows a user to type a string of text
that consists of the standard alphabet (“A” to “Z”), space (“_”),
and delete (“<”). In order to type each individual character, the
user must respond to a sequence of queries. Each query asso-
ciates possible characters with one of five visual targets (i.e.,
five blinking SSVEP stimuli). Our speller poses two types of
queries (Fig. 1).

1) A range query asks which of five ordered groups of charac-
ters contains the desired character, by associating a target
with each group. In the example of Fig. 1(a), the five groups
are “<’to “A”, “B” to “K”, “L” (i.e., a group with only one
character), “M” to “T”, and “U” to “_”.

2) A character query asks which of four ordered charac-
ters—if any—is the desired character, by associating a
target with each one and by interpreting the fifth target
as “none of them.” In the example of Fig. 1(b), the four
characters are “A”, “E”, “I”, and “L”.

Each query reduces our speller's uncertainty about the user's de-
sired character. Once the speller is confident enough, it makes a
“guess” at the desired character, appends this guess to the string
of text at the bottom of the screen, and proceeds with a new se-
quence of queries to obtain the next character.

In Section II-A, we define a formal model of our speller. In
Section II-B, we use this model to derive algorithms that say
how to choose each query (based on maximizing a measure of
mutual information that we call IGR) and how to guess the de-
sired character (based on maximizing likelihood with respect to
a language model).

A. Models
In what follows, we denote the set of possible characters by
C ={ < ' A,...,"Z'," '} and the set of possible targets,

numbered from left to right, by 24 = {1,...,5}.
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1) Queries: We can describe any range or character query as
amap f:C — U. For example, the range query in Fig. 1(a) is
given by

1, ifee{ <" A}
2, if ee{B,...,’K"}
fle)=<3, ifce{L} (1)
4, ifce {M,...;"T"}
5, otherwise.

Suppose that the user in this example were trying to spell the
word “COMPILE.” Having already spelled “COMP,” the cur-
rent desired character would be "T'. The formal definition (1) of
the range query in Fig. 1(a) makes clear that the correct choice
of target would be f('T') = 2—i.e., that the user should attend
to the second target from the left in order to specify their de-
sired character most quickly. Similarly, the character query in
Fig. 1(b) is given by

1, ife="A'
2, ife="E
fle)=4¢3, ife="T )
4, ife="L
5, otherwise.

Continuing with our example, the correct choice of target in this
case would be f('T') = 3. As can easily be derived, we have
2925 distinct range queries and 20475 distinct character queries
from which to choose, for a total of n = 23400. We index the
corresponding maps by fi,..., fa.

2) Accuracy and Latency: As we have seen, there is a single
correct choice of target—call it the intended target—to which
the user should attend in response to a query. Because of un-
certainty in the measurement and interpretation of SSVEP, the
target that is actually selected—call it the observed target—may
differ from the intended target. To capture this difference, we
model the intended target as a discrete random variable X and
the observed target as a discrete random variable Y, both taking
values in /. We also model the amount of time taken for the
user to respond to a query as a continuous random variable 7T,
taking values in the set of positive real numbers RT. Two sta-
tistical quantities then suffice to describe the input performance
of a user:

+ the conditional probability mass function py|x(y|x),
which specifies the likelihood that the observed target is y
given that the intended target is x;

« the conditional expectation E(T|X = 2,Y = y), which
specifies the average time taken for the user to respond to
a query given that the intended target is  and the observed
target is y.

We will refer to py| x (y|) as the accuracy model and to E(T| X
= x,Y = y) as the latency model. Although these two models
may differ from one user to another, we assume that they re-
main the same over time—in other words, that input perfor-
mance is the same when typing the first character in a string
of text as when typing the last character. Accuracy and latency
models can be computed from experimental data (e.g., during
user training)—we will say how in Section III-C. For now, we
assume both models are given.

3) Language: We model the desired character as a discrete
random variable C, taking values in C. The probability mass
function p¢(c) then completely describes the speller's uncer-
tainty about the user's desired character. We will refer to pc(c)
as the language model. There are standard ways to derive this
language model from a database of English text—we will say
how in Section III-D. For now, we assume that the language
model is given.

Unlike the accuracy and latency models, the language model
changes over time—indeed, the purpose of each query is to steer
this change in a way that reduces uncertainty about the desired
character. In particular, by application of Bayes' theorem (see
Appendix A), it is possible to show that

PY\X(Z/|fz‘(C))PO(C)
sce Py x (! fi(s))pc(s)

peyy (cy) = > 3
for all ¢ € C. Equation (3) provides a recursive update rule:
start with the current language model p¢, observe a target y in
response to a query f;, compute a new language model pc|y
using (3), and replace pc with poy.

B. Algorithms

1) How to Choose Each Query: We can use the models de-
fined in Section II-A to measure the amount of information to
be received per unit of time about the desired character. We call
this quantity IGR and define it as follows:

I(X;Y)

IGR = ———.

E(T) “

The numerator in (4) is the mutual information between the in-
tended target and the observed target. It is defined as

I(X;Y) =) Y pxyi(z,y)log <M> (%)

px(@r ()

and is a commonly used measure of information gain [18]. The
denominator in (4) is the average time taken for the user to re-
spond to a query. It is defined as

E(T) =YY pxy(@yETX =27 =y). (6)
z€U yeld

It is possible to show (see Appendix B) that
px,y (2, y) = py x (W|2)px () @)
py(®) =) pyix(Wl2)px () ®)

zelU
and

px(@) = Y. polo) )

{e€C:fi(c)=u}

so IGR (4) can be computed with knowledge of the accuracy
model py|x (y|z), the latency model E(T|X = 2,V = y),
the language model p(c), and the query f;{c), all of which
we defined in the previous section. Note that IGR is an explicit
function of the query index :—we can make this dependence
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clear by writing IGR(7). Our speller chooses the query with
index that maximizes IGR

imax = arg max IGR(7).
i€{1,....n}

2) How and When to Guess the Desired Character: Our
speller's best guess at the desired character given an observed
target y in response to a query f; is the character of maximum
likelihood with respect to the updated language model

Cmax — arg maXpCIY(C‘y)
ceC

where pcy(cly) is computed as in (3). The only remaining
question is if our speller is confident enough about this guess to
append ¢y, to the string of text, or if it should continue posing
queries. To answer this question, our speller compares the max-
imum likelihood

Puax = Py (Cmax|y)

to the likelihood of certain other possible characters. In partic-
ular, we define the set

Cinner = {C cC: f(C) =Y and ¢ 7é Cmax}

of characters other than ¢, that are associated with the same
observed target y, and the set

Couter = {C eC: f(C) # y}

of characters not associated with this target. Next, we compute

4 B 07 if Cinner = 0
Pinner = maX{ch (C|y) cE Cinner}s otherwise
and
_ ()’ if Couter - @
Pouter = max{pc|y(6|y)i = Couter}a otherwise

i.e., the maximum likelihood over characters in Ciyner and
Couter, respectively (or zero if either set is empty). Our speller
stops posing queries when both

pmax

Pmax > ﬁ
Pouter

> and

Pinner

where the thresholds « and 5 are parameters.
III. METHODS

A. Participants

We performed experiments with 11 able-bodied participants
between the ages of 20 and 30 who had normal or corrected-
to-normal vision. All experiments were approved by the Insti-
tutional Review Board of the University of Illinois.

B. Signal Recording and Classification

The steady-state stimuli were five targets presented on an
LCD monitor, ordered from left to right, at 7.50, 10.0, 6.67,
12.0, and 8.57 Hz. These stimuli appear as white squares across
the top of Fig. 1. EEG signals were extracted from seven elec-
trode sites across the occipital region of the scalp (PO7, PO3,

PO4, PO8, O1, OZ, 02) at impedances not exceeding 10 k€2.
All electrodes were referenced to electrode location PZA [19].
EEG signals were acquired using a 128-channel bioamplifier at
256 Hz, bandpass-filtered from 1 to 30 Hz, and analyzed using
a 1.5 s sliding window with an overlap of 1.375 s. A classifier,
based on the traditional power spectral density analysis (PSDA)
method [20], was used to determine user selections. In our im-
plementation of this classifier, multi-electrode EEG data were
filtered into four different spatial representations using bipolar
and Laplacian combinations (see [21] for a description). The
specific combinations, taken from Prueckl [22], were as follows:

CH, = 4% 0Z — (01 + 02 + POT + POS)
CH, =2%0Z — (01 + 02)

CHs = 4% 0Z — (01 + 02 + PO3 + PO4)
CH, =2%0Z — (POT + POS).

The fast Fourier transform (FFT) with a rectangular window
and zero-padded to 1024 points, was computed for each com-
bination using MATLAB's “fft” function. The result was then
multiplied by its complex conjugate to obtain power spectra. A
signal-to-noise ratio (SNR) was obtained for each combination
and each frequency by dividing the power of the signal (av-
erage power at the frequency of interest £0.2 Hz) by the av-
erage power of the noise (average power in the frequency band
of 6.25-12.5 Hz excluding the frequency of interest £0.2 Hz).
The highest and lowest SNR values for each frequency were dis-
carded. The two remaining SNR values were averaged to obtain
a single value for each frequency. If any of these five averaged
values exceeded a pre-determined threshold, the corresponding
target was selected as the observed target. If more than one fre-
quency exceeded the threshold during the same window of time,
the lowest frequency was selected as the observed target.

C. Training Phase

The accuracy model and the latency model (Section 11-A2)
for each user were derived from data collected during a training
phase. In this training phase, 100 queries were presented to each
user. An arrow specified the intended target for each query.
Users were asked to respond by attending to that target. In total,
each of the five targets was specified as the intended target 20
times, in random order. For each query, the intended target, the
observed target, and the user response time were recorded. The
conditional probability py-| x (y|2:) was computed as the ratio of
the number of times y was the observed target given that 2 was
the intended target over the number of times 2 was the intended
target. If y was never observed, in other words if the empirical
value of py|x (ylx) = 0, a small number (0.01) was added.
These values were then normalized to obtain a probability mea-
sure. The conditional expectation E(7|X = 2,Y = y) was
computed as the average user response time over all queries in
which the intended target was x and the observed target was y.
If y was never observed, in other words if the empirical value
of E(T|X = 2,Y = y) = 0, then this empirical value was
replaced with the average user response time over all queries
(over all intended and observed targets).
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Fig. 2. Sample screenshots of the spellers re-implemented for comparison to our speller: speller of Volosyak [shown in (a)] and speller of Cecotti [shown in (b)].

D. Spelling Phase

Following training, participants completed a three-part
spelling phase. The purpose of this spelling phase was to eval-
uate the performance of participants using our speller with their
performance using two existing SSVEP spellers, the one of
Volosyak [3] and the one of Cecotti [4], that were highlighted
in a review of BCI text-entry [1]. All three spellers presented
the same number of visual targets (five) and allowed users to
type a string of text consisting of the same standard alphabet
(“A” to “Z”), space (“_”), and delete (“<”). These spellers were
implemented as follows.

* Our interface (Fig. 1) was implemented exactly as de-
scribed in Section II. The accuracy and latency models
were derived from data collected during training as
described in Section III-C. The language model was con-
structed with prediction by partial matching (PPM) [23]
applied to the English corpus provided with the Dasher
text-entry interface [24]. The conditional probability of
the delete (“< ) character, which was not included in the
PPM model, was fixed at 0.05.

+ The interface of Volosyak [3] arranges characters in a grid
according to their frequency in English text, associates four
targets with cardinal directions (left, right, up, down) in
which to move a cursor in this grid, and interprets the fifth
target as selecting the character at the current location of
the cursor [Fig. 2(a)]. As an example, a user might try to
select “B” with the following sequence of intended targets:
right, right, down, and then select. There were differences
between our implementation and the original implementa-
tion of [3], both in the location of targets on the screen and
in the arrangement of characters in the grid. These differ-
ences are potential sources of error and will be discussed
further in Section V.

+ The interface of Cecotti [4] arranges all characters except
delete (“<) in a static hierarchical menu with a deci-
sion between three groups at each level of the hierarchy
(three groups of nine characters, then of three characters,
and finally of one character), associates a target with each
group, associates the fourth target with delete (“<”"), and

TABLE 1
TARGET TEXTS AND THEIR NLL

Text  Text NLL (bits/char)
Txtl BCI 7.19
Txt2 BRAIN 3.04
Txt3  SIREN 5.31
Txt4 BRAIN_COMPUTER_INTERFACE 1.98
Txt5 PLEASE_GET_ME_A_BLANKET 2.64

interprets the fifth target as moving up in the hierarchy
[Fig. 2(b)]. For example, a user might try to select “B” with
the following sequence of intended targets: /eft, left, and
middle. Our implementation and the original implementa-
tion of [4] differ only with respect to the location of targets
on the screen.

During the evaluation of each speller, subjects were asked to
specify the texts in Table I. The first three (Txtl, Txt2, Txt3)
were single-words texts and the last two (Txt4 and Txt5) were
multiple-word texts. Table I also lists the likelihood of each
text with respect to our language model as measured by the av-
erage number of bits necessary per character, a quantity that
is called the negative log-likelihood per character (NLL). The
multiple-word texts (Txt4, Txt5) had NLL comparable to the
average NLL of English texts, which is about 2 bits per char-
acter [25], [26]. Participants completed all five texts, in order,
for a single speller before moving on to the next speller. There
was a short (one minute) break between each speller. To reduce
possible bias, the order in which the spellers were evaluated was
randomized. Experimentation was halted at the request of the
user or if user performance was lower than one character per
minute (cpm).

E. Simulation Study

As we acknowledged in Section III-D, there were small dif-
ferences between our implementation and the original imple-
mentation of the spellers of Volosyak [3] and Cecotti [4]. In our
implementation of the speller of Volosyak, the fifth row of the
character grid was shifted one cell to the right of the original
implementation. To quantify the effect of this layout change we
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performed Monte-Carlo simulations using two versions of the
speller of Volosyak: the one utilized in the present study, and the
one in [3] with the original layout. A total of 1000 simulations
were conducted with each text (listed in Table I) and participant
(S1-S6, S8, S9). In each query, recall that there is a single correct
choice of intended target, the simulation assumes that the human
subject always makes the correct choice of intended target. The
observed targets and the target selection latencies were ran-
domly sampled according to the accuracy and latency models
of each participant. In particular, given an intended target z the
observed target y¥ was sampled according to the probability dis-
tribution py | x (y|#). The selection latency was sampled from
a normal distribution with mean E(T|X = z,Y = y) and
with standard deviation computed from the participant's training
trials. Results were obtained for our speller, the two versions of
the speller of Volosyak, and the speller of Cecotti.

IV. EXPERIMENTAL RESULTS

Of the 11 subjects who participated in our study, six (S1, S2,
S3, S4, S5, S6) were able to complete the entire experiment.
Three of the participants (S7, S8, S9) completed the training
phase, but were unable to complete all three parts of the spelling
phase. The remaining two participants were unable to complete
the training phase with at least 50% accuracy on all of the tar-
gets. Their data have been excluded from further analysis. All
subjects were naive to EEG-based BCIs with the exception of
subjects S1 and S2, who had extensive experience. Specifically,
subjects S1 and S2 had previously participated in greater than
20 h of experiments with SSVEP-based BCIs. The following
performance measures were used.

* Input error (), the fraction of the number of incorrect
queries—in which the observed target did not match the
intended target—to the number of all queries.

 Input latency (E(T)), the mean latency—the time it
takes to obtain a user response after the onset of a stim-
ulus—across all queries.

* Input/character ratio (C), the average number of user re-
sponses required to spell a single character of the target
text, i.e., the ratio of the total number of queries to the
number of characters in the target text.

* Spelling rate ( R), the average number of characters spelled
per minute (cpm), without counting any instances of delete,
i.e., the ratio of the number of characters in the target text
to the total time elapsed in spelling.

We note that it was indeed possible to compute the input error
during the spelling phase, since—under the assumption that er-
rors are derived from incorrect classification of SSVEP response
and not from incorrect user behavior—the intended target (ei-
ther a singleton or a finite set) was always known.

A. Training Phase

Table II shows the training data obtained from each partici-
pant. Across the six subjects who completed the entire experi-
ment, the input error was 2%, and the input latency was about
3 s. For subjects S8 and S9, who only completed the training
phase, error was higher, 13% for S8 and 20% for S9. Average

TABLE II
TRAINING PHASE. (A) AVERAGE INPUT ACCURACY (%) OF EACH SUBJECT
FOR EACH TARGET, (B) AVERAGE INPUT LATENCY (SECONDS)
OF EACH SUBJECT FOR EACH TARGET

Subject Target 1 Target 2 Target 3 Target4 Target5 Avg
S1 100 100 100 100 100 100
S2 100 95 100 100 100 929
S3 100 100 80 100 100 96
S4 100 100 100 100 95 929
S5 100 100 100 100 95 99
S6 100 95 100 95 100 98
Avg 100 98 96 99 98 98.5
S7 100 100 95 100 100 99
S8 90 95 100 55 95 87
S9 75 75 80 95 75 80
Avg 88.3 90 91.7 83.3 90 88.7
(@)
Subject Target 1 Target 2 Target 3 Target4 TargetS5 Avg
S1 2.66 2.63 3.07 3.54 2.64 2.91
S2 6.07 345 3.77 3.84 2.85 3.99
S3 2.76 2.79 3.94 227 2.25 2.80
S4 2.65 1.77 1.88 2.85 2.10 2.25
S5 1.44 1.38 1.98 1.74 1.53 1.61
S6 4.80 4.04 3.90 3.50 3.61 3.97
Avg 3.40 2.68 3.09 2.96 2.50 2.92
S7 1.97 2.57 1.84 3.73 2.40 2.50
S8 3.37 3.65 2.65 8.17 2.40 4.05
S9 7.65 9.93 523 3.82 8.22 6.97
Avg 4.33 5.38 324 5.24 4.34 4.51
(b)

input latency for subjects S7 and S8 was comparable to those
who completed the entire study. Input latency for S9, however,
was considerably higher at 6.97 s.

B. Spelling Phase

Table III shows the spelling rates obtained for each speller
and text during the three-part spelling phase. We applied the
Friedman Test—a common nonparametric statistical test for re-
peated measures experiments—to determine any significant dif-
ferences in spelling rate due to the speller interface across all
of the texts (Txtl, Txt2, Txt3, Txt4, and Txt5). The Friedman
Test revealed a significant main effect of speller interface (x? =
10.17,p < 0.01) on spelling rate. Post-hoc tests with Bonfer-
roni correction revealed that our speller was significantly faster
than the speller of Volosyak (p < 0.05) and the speller of Ce-
cotti (p < 0.05), but our implementations of the spellers of
Volosyak and Cecotti did not differ significantly in performance
from one another (p > 0.5). For single-word texts (Txtl, Txt2,
and Txt3) average spelling rates obtained with all three spellers
were similar, averaging 7.33 cpm for our speller, 6.32 cpm for
the speller of Volosyak, and 6.25 cpm for the speller of Cecotti.
For multiple-word texts (Txt4 and Txt5), the average spelling
rate obtained with our speller (11.93 cpm) was nearly twice as
fast as those obtained with the spellers of Volosyak (5.69 cpm)
and Cecotti (6.22 cpm). Notably, using our speller subject S2
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TABLE III
SPELLING PHASE RESULTS - SPELLING RATE. (A) AVERAGE SPELLING RATES,
BY SUBJECT AND TEXT FOR OUR SPELLER, (B) AVERAGE SPELLING RATES, BY
SUBJECT AND TEXT FOR SPELLER OF VOLOSYAK [3], (C) AVERAGE SPELLING
RATES, BY SUBJECT AND TEXT FOR SPELLER OF CECOTTI [4]

TABLE IV
SPELLING PHASE RESULTS—INPUT ERROR, INPUT LATENCY, AND INPUT
PER CHARACTER RATIO. (A) % INPUT ERROR (€} FOR EACH TARGET,
AVERAGED ACROSS SUBJECTS, (B) INPUT LATENCY (E(7')) IN SECONDS
FOR EACH TARGET, AVERAGED ACROSS SUBJECTS, (C) INPUT/CHARACTER
RATIO (C') FOR EACH TARGET, AVERAGED ACROSS SUBJECTS

. Single Multiple
Subject Txtl Txt2  Txt3 Txt4  Txt5 - -
Words Words Speller  Txtl Tx2 Tx3 3\1/21%: Txt4  Txt5 l\vf,glg‘s’le
S1 6.75 993 4.31 7.00 1096 11.09 11.03
S2 7.89 10.00 11.11 9.67 15.05 17.12  16.09 Ours 0.09 0.04 0.02 0.05 0.02 0.04 0.03
S3 231 1033 890 7.18 1223 1344 12.84 Volosyak 0 0.03 0.11 0.05 0.04 0.05 0.05
S4 393 10.15 476 6.28 1041  8.97 9.69 Cecotti 0.03  0.02 0.05 0.03 0.04 0.09 0.07
S5 482 1474 11.16 1024 | 1567 1553 15.60
S6 195 226 6.63 3.61 6.95 5.72 6.34 (a)
Avg 461 957 7.81 7.33 11.88 1198 11.93 ; :
| Speller  Txtl Tx2 Tx3 Sl | piy pys Multple
@ Words Words
a
Ours 366 340 3.63 3.60 344 345 3.45
. Single Multiple Volosyak  4.35 346  3.93 3.91 355 331 343
Subject  Txtl — Txt2 - Tx3  yyorgg | Tx4 TXE - yorgs Cecotti 398 295 322 338 | 325 295 3.0
S1 4.52 5.35 5.16 5.01 4.27 4.55 441 )
S2 5.61 6.10 10.67 7.46 596  5.61 5.79
S3 467 775 9.62 7.35 743  8.15 7.79 Single Multiple
S4 445 478 872 598 | 592 652 622 Speller  Txtl Tx2 Txt3 oo | Txtd  TxtS g
S5 748 724 1218 8.97 7.55 8.18 7.87
S6 209 277 465 317 | 275 138 207 Ours 444 240 240 3.08 | 158 162 160
Volosyak  3.33 340 2.07 2.93 335 413 3.74
Avg 480 567 850 632 | 565 573 569 Cecotti 356 3.3 343 337 | 338 384 3.6l
(b) ©
. Single Multiple
Subject Txtl  Txt2  Txt3 Words Txt4  Txt5 Words TABLE V
SIMULATION STUDY. (A) AVERAGE SIMULATED SPELLING RATES (R) OF
S1 352 456 359 389 | 395 475 435 SINGLE-WORD TEXTS (TXT1, TXT2, TXT3) FOR AN AVERAGE OF SUBIECTS
S2 5.59 895 6.14 6.89 7.35 6.80 7.08 S1-S6, SUBJECT S8, AND SUBJECT S9. SIMULATIONS THAT FAILED TO
S3 8.25 9.15 7.53 8.31 9.03 422 6.63 PRODUCE THE TARGET TEXT ARE DENOTED “-”. (B) AVERAGE SIMULATED
sS4 565 839 882 7.62 6.16 735 6.76 SPELLING RATES (R) OF MULTIPLE-WORD TEXTS (TXT4, TXT5) FOR AN
S5 344 1051 934 7.76 8.12 9.87 9.00 AVERAGE OF SUBJECTS S1-S6, SUBJECT S8, AND SUBJECT S9. SIMULATIONS
S6 267 3.42 2.90 3.00 3.17 3.87 3.52 THAT FAILED TO PRODUCE THE TARGET TEXT ARE DENOTED “-”
Avg 485 750 639 625 | 630 6.14 622 Speller Average (S1.56) S8 S9
© Ours 945 6.15 3.99
Volosyak 7.26 3.32 -
. . . . Volosyak (original) 8.18 3.60 -
achieved more than 17 cpm py spelling Txt5 with zero input Cecotii 617 440 122
error and with 2.5 s of mean input latency.
Table IV shows the average input error, input latency, and @
input per character ratio for each of the three spellers and five Speller Average (S1-S6) S8 S9
texts. Input errors [Table IV(a)] increased compared to training, Ours 15.1 1038 178
but were similar across both single-word and multiple-word Volosyak 6.29 3.52 -
texts at about 5%. Input latencies [Table TV(b)] also increased Z‘;‘c‘;st{iak (original) 2‘32 i‘ig 21
compared to training from 2.92 s to 3.38 s for the speller of Ce- : : :
cotti, 3.60 s for our speller, and 3.91 s for the speller of Volosyak. (b)

During the spelling of multiple-word texts our speller required
less than half (1.60) the number of the inputs as the spellers of
Volosyak (3.74) or Cecotti (3.61) to specify the same characters
[Table IV(c)].

C. Simulation Study

Table V shows the results of Monte-Carlo simulations. For
single-word texts, the original layout for the speller of Volosyak
[3] was, on average, 0.92 cpm faster for S1-S6 than the layout
we used in our implementation of this speller. For multiple-word
texts, the original layout of the speller of Volosyak [3] was 0.09
cpm faster for S1-S6 than the layout we used in our implemen-
tation of this speller.

V. DISCUSSION

When asked to specify multiple-word texts, participant
performance with our speller (11.93 cpm) was nearly double
that with the compared spellers (5.69 cpm for the speller of
Volosyak [3] and 6.22 cpm for the speller of Cecotti [4]). This
increase in performance was not due to differences in input
error [Table IV(a)], in input latency [Table IV(b)], or in the
size and shape of visual targets, which were identical. Instead,
the performance increase can be attributed to the reduction in
the number of queries required to determine the desired input
character. In particular, when evaluated on multiple-word texts,
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our speller required less than half the number of queries as the
spellers of Cecotti [4] or Volosyak [27] to specify a character,
on average [Table IV(c)]. Our use of a larger query pool and
of IGR as a measure of performance to be maximized when
choosing queries from this pool was what led to this reduction
in the number of required queries.

Despite the fact that users specified texts faster with our
speller, results show that the spelling rate for single-word texts
was comparable for all three interfaces: 7.33 cpm with our
speller, 6.32 cpm with the speller of Volosyak [3], and 6.25 with
the speller of Cecotti [4]. We attribute the lower spelling rate of
our interface under these conditions to the higher NLL values
of the single-word texts (Table I). In particular, we observe a
clear inverse relationship between NLL and spelling rate in
Table I1I(a): Txtl had an NLL of 7.19 and was spelled at a rate
of 4.61 cpm, Txt3 had an NLL of 5.31 and was spelled at a rate
of 7.81 cpm, and Txt2 had an NLL of 3.04 and was spelled
at a rate of 9.57 cpm. Both multiple-word texts had lower
NLLs—closer to the average of English text, which is 2 bits per
character [25], [26]—and consequently higher average spelling
rates. The reason for this trend is that, by using a language
model, our speller tries to take advantage of the fact that text
with high NLL (e.g., “BCI” as in Txtl) is rare in everyday
conversation.

Results from the simulation studies suggest that the increase
in performance with our speller as compared to the speller of
Volosyak [3] was not due to the small difference in character
layout. The fifth row of the character grid in our implementa-
tion was shifted one character to the right of the original imple-
mentation described in [3]. We simulated performance with our
implementation and compared it with the performance of the
original implementation. These simulations showed no differ-
ence between our implementation (6.38 cpm) and the original
(6.29 cpm) for multiple-word texts. For single-word texts, the
original implementation was slightly faster (8.18 cpm) than our
implementation (7.26 cpm). We note that the original versions
of the spellers of Volosyak [3] and Cecotti [4] also differed from
our implementations in the locations of the targets. The effect
of this change has not been investigated further, may have in-
creased overall input latency, and represents a potential source
of error.

One interesting trend that emerged from our study is that the
average input latency of users with our speller (3.60 s) was
higher than the average input latency for the speller of Cecotti
[4] (3.38 s). The input latency of all three spellers was slower
than the average input latency during training (2.92 s). Since
the layout of characters in our speller changes for each query,
the user needs to visually search the layout in order to locate
their desired character, slowing target selection in our speller as
opposed to the speller of Cecotti [4]. Our speller was designed
to minimize this issue by displaying characters in a single, al-
phabetically ordered, row. There may be conditions, however,
when smaller query pools are actually preferable. Another pos-
sible drawback of our speller is that it requires training. This
requirement is a limitation of the design, but it may be possible
to either minimize this training step or to use an online training
paradigm. Some more advanced classifier designs also require
training data [28]—it may be possible to train both the speller

and the classifier simultaneously. With respect to our use of mul-
tiple query types, further work would be needed to characterize
the impact of each type of query on overall performance.

VI. CONCLUSION

In this paper, we presented a steady-state visually evoked
potential based brain-computer interface that allowed users to
input text by responding to a sequence of queries. These queries
were chosen from a large query pool to maximize IGR, the ex-
pected amount of information to be received per unit of time
about the desired character. The computation of IGR was based
on three models, a language model (that predicted likely char-
acters based on context) and two models of user performance
(input accuracy and input latency). Experimental results demon-
strated that six subjects were able to use our interface to input
multiple-word text at an average of 11.93 cpm, with one subject
achieving an average spelling rate of 16.09 cpm.

There are several ways in which the interface described here
could be improved. Input response times could be reduced
through the use of different classifiers (such as those by Lin
[29] or Johnson [28]), the shape and size of the stimuli could
be changed, the number of input classes could be increased,
word completion [30] could be implemented, and different
frequencies could be assigned to the targets. As an example
of how these changes might improve the interface, consider
the assignment of frequencies to targets. It is clear from our
training data (Table II) that this association matters. For ex-
ample, during training subject S2 selected Target 5 (8.57 Hz)
more than twice as fast (2.85 s) as Target 1 (7.5 Hz, 6.07 s). In
other words, for subject S2, Target 5 was easier to select than
Target 1. If we switch the assignment of frequencies to targets,
we would expect Target 1 (8.57 Hz) to be easier to select than
Target 5 (7.5 Hz). In our interface, the set of characters with
which Target 1 and Target 5 are associated are different. Thus,
when we change the assignment of frequencies to targets, we
expect a specific set of characters to be easier to select. IGR
could be used to determine the best assignment of frequencies
to targets. This could improve the maximum spelling rate of
participants and represents a topic of future work.

APPENDIX A
DERIVATION OF LANGUAGE MODEL UPDATE RULE

We will proceed to derive (3), which says how to update the
language model given an observed target y in response to a
query f;. Bayes' theorem tells us that

Py (yle)pc(e)

pep () = = et O
for all ¢ € C. Note that
pyic(yle) = Zupmx,c(y\wm)pxm(:vld (1n
=5 vl o el (1)
v 15:6) (13)
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where (11) follows from the law of total probability, (12) fol-
lows by assumption that the observed target and the desired
character are conditionally independent given knowledge of the
desired target, and (13) follows by assumption of zero user error
in response to a query, since in this case

1, i fi(e)=2
pX\C(m|C) - {07 otherwise.

After substitution of (13) into (10), we arrive at (3).

APPENDIX B
DERIVATION OF INFORMATION GAIN RATE

We will proceed to derive (7)—(9), which are used to compute
the IGR. Equation (7) follows from the definition of conditional
probability. Equation (8) follows from the law of total proba-
bility. Equation (9) follows from the law of total probability

px(x) =Y pxic(zle)pc(c)

ceC

and by assumption of zero user error in response to a query,
since in this case

1, if file)=2
0, otherwise.

pX\c(iL‘|C) = {
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