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Abstract— In this paper, we develop an approach to inverse
optimal control for a class of hybrid dynamical system with
impacts. As it is usually posed, the problem of inverse optimal
control is to find a cost function that is consistent with an
observed sequence of decisions, under the assumption that
these decisions are optimal. We assume instead that observed
decisions are only approximately optimal and find a cost
function that minimizes the extent to which these decisions
violate first-order necessary conditions for optimality. For the
hybrid dynamical system that we consider with a cost function
that is a linear combination of known basis functions, this
minimization is a convex program. In fact, it reduces to a
simple least-squares computation that—unlike most other forms
of inverse optimal control—can be solved very efficiently. We
apply our approach to a dynamic bipedal climbing robot in
simulation, showing that we can recover cost functions from
observed trajectories that are consistent with two different
modes of locomotion.

I. INTRODUCTION

Inverse optimal control (IOC) is the problem of recovering
a cost function which explains observations of optimal or
“expert” trajectories [1]. In some applications, the goal might
be to imitate the behavior of an expert. In other cases, such
as the study of human motor control, finding the underlying
cost function could be precisely what we are interested in.
IOC problems are of interest in a wide range of applications,
from basic science [2], [3] and locomotion [4], [5], to optimal
control of aircraft [6], and more recently aerobatic helicopter
flight [7] within the robotics community.

The problem of IOC has been studied in many contexts.
In the context of Markov decision processes, IOC has been
studied in [8], [9]. IOC algorithms for non-linear continuous
systems have been developed in the context of linearly-
solvable Markov decision processes [10]. Also, in a previous
paper, we have developed a similar approach for IOC in
non-linear continuous systems [11]. However, most of these
algorithms require solving optimal control problems which
introduces a significant computational bottleneck for these
algorithms.

Recently, a new formulation of a problem closely related to
IOC has been proposed by [12], which completely eliminates
the computational bottleneck of previous IOC algorithms. In
this formulation, unlike traditional approaches to IOC, where
it is assumed that the choice of the decisions is perfect and
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their observations are noisy, it is assumed that observations
of the decisions are perfect, while the choice of the decisions
is “approximately optimal”. The goal of this approach is to
minimize the extent to which first-order necessary conditions
of optimality are violated. Minimization and evaluation of
these necessary conditions no longer requires solving an
optimal control problem, and thus the IOC problem can be
solved very efficiently. In fact, the problem reduces to a least-
squares minimization.

The contribution of this paper is extending the new
formulation of IOC and the notion of “approximate opti-
mality” to hybrid dynamical systems with impacts. Hybrid
dynamical systems consist of both continuous and discrete
events [13]. For example, bipedal walking is often modeled
as a hybrid system consisting of continuous motions of the
lower-limbs and discrete impacts of the legs with the ground.
Hybrid systems, can be used in many other fields such as
robotics [14], [15] and air traffic control [16]. In this paper,
we use the first-order necessary conditions for optimality for
a class of hybrid dynamical systems introduced in Long et
al [17], and we define the notion of approximate optimality
for those systems. This notion will then allow us to introduce
the IOC problem as a convex least-squares optimization. The
performance of our IOC algorithm is tested on a simulated
dynamic bipedal climbing robot.

Optimal control and inverse optimal control for hybrid
systems are often difficult, due to the nature of these systems
having both discrete and continuous events. Examples of
works which have incorporated optimal control for walking
systems are [18], [19]. The work by Long et al. [17] devel-
oped an optimal control approach where the first derivative
of the cost function is taken explicitly with respect to the
controls. The application of IOC to one class of hybrid
systems was explored in [20], where a cost function was
estimated to model human yoyo playing. The problem of
IOC for hybrid systems is important because such an ap-
proach can have implications in lower limb prosthetic design
and understanding human locomotion. Moreover, IOC plays
an important complementary role to optimal control. While
optimal control can produce desired control for a system, the
performance of the controller significantly depends on the
cost function chosen to be optimized, and IOC approaches
can enable the estimation of appropriate cost functions.

The remainder of this paper is divided in the following
manner. In Section II we address the problem of optimal con-
trol for a class of hybrid dynamical systems discussed in [17].
We then introduce the inverse optimal control problem for
hybrid systems in Section III. We discuss our proposed
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solution to this problem in Section IV. The proposed solution
is evaluated on a simulated dynamic bipedal climbing robot
in Section V. We conclude in Section VI, and we present a
discussion about possible future research directions.

II. OPTIMAL CONTROL

In this paper, we focus on the class of hybrid dynamical
systems with impacts with following form

ẋ = f(x, t), when (x, ξ) /∈ S (1)
x+ = ∆(x, ξ), when (x, ξ) ∈ S,

where x ∈ Rn is the state of the system at time t, ξ ∈ Ξ
are impact controls, f is the continuous dynamics, ∆ is
an instantaneous impact map, S is the impact surface and
x+ is the post-impact state. Once the pair (x, ξ) enters
the impact surface S, the state undergoes an instantaneous
change to x+ governed by the impact map ∆. The impact
controls ξ can influence both when the impact occurs and
the result of the impact. Note that in this class of systems,
the controls in the continuous dynamics are either zero or
known. Therefore, this hybrid system can be characterized
by a finite set of impact controls ξ = [ξ1, ..., ξN ]T , which
produce post-impact states x+ = [x+

1 , ..., x
+
N ]T , and impact

times τ = [τ1, ..., τN ]T . In this paper, we use the subscript
k = 1, ..., N to denote the k-th impact.

Using the fundamental theorem of calculus along with
equation (1), the pre-impact states, represented by x−k can be
obtained by forward integration of the continuous dynamics
with

x−k+1 = x+
k +

∫ τ−
k+1

τ+
k

fk(x(s), s)ds. (2)

The post-impact states are then obtained from

x+
k = ∆k(x−k , ξk). (3)

In this notation, τ−k = τ+
k , however, we use superscripts −

and + to denote just before or just after the impact. Further-
more, we assume that the impact time τk+1 is obtained as
a function of the last impact time, the impact control input
and the previous state as follows

τk+1 = hk+1(ξk+1, x
+
k , τk). (4)

To understand how to perform inverse optimal control, we
first need to know how optimal trajectories can be obtained
by minimizing a cost function. The impact time denoted by
τ0 and the initial state of the system denoted by x(τ0) = x0

are known, and the optimization is performed with respect to
the state variables and the impact control inputs as follows

arg min
x,τ,ξ

J(x, τ, ξ) = arg min
x,τ,ξ

N∑

k=1

Lk(x+
k , τk), (5)

s.t. (1)− (4) & ξ ∈ Ξ,

where J is a cost function chosen to encode a desired
trajectory for the N impacts, and the function Lk is the cost
enforced at time step k. Note that in general, Lk can be any

function of the state and impact time of the system. Although
we have chosen Lk not to be a function of ξ, this can be
easily incorporated as well. Examples of these cost functions
can be found in section V-B.

The optimization in (5) can be posed in a different way.
As can be seen from equations (1)–(4), a trajectory can be
uniquely represented using the initial conditions x0 and τ0
and the impact control inputs ξk, for k = 1, ..., N , i.e.
x+
k = x+

k (x0, τ0, ξ1, ..., ξk) and τk = τk(x0, τ0, ξ1, ..., ξk).
Therefore, by considering the dependence of state variables
on control inputs, optimization (5) can alternatively be
written only with respect to the impact controls. In this
formulation, the equality constraints are being utilized in the
objective, and the new optimization is performed with only
constraints on the inputs in the following way

arg min
ξ∈Ξ

J(x0, τ0, ξ) = (6)

arg min
ξ∈Ξ

N∑

k=1

Lk(x+
k (x0, τ0, ξ), τk(x0, τ0, ξ)).

In this paper, we assume that the cost function is a weighted
combination of some known basis functions. We will denote
the basis functions with J̃ = [L̃1, ..., L̃M ]T and their corre-
sponding weights α = [α1, ..., αM ]T . Note that the number
of basis functions M does not necessarily have to equal
the number of time slots N . The produced trajectories are
thus the solution to the following optimization problem with
known weights α

ξ∗ = arg min
ξ∈Ξ

αT J̃(x0, τ0, ξ) = arg min
ξ∈Ξ

M∑

m=1

αmL̃m(x0, ξ).

(7)

A technique proposed by [17] for solving this optimization
problem is presented later in the paper. Next, we discuss the
main focus of this paper, which is the problem of inverse
optimal control for the described system.

III. INVERSE OPTIMAL CONTROL

Inverse optimal control is the problem of recovering a cost
function that would have resulted in an observed trajectory.
Traditionally, the formulation of this problem assumes that
the trajectories are optimal, but corrupted by noise. We
consider a different formulation of the IOC problem, due
to [12], in which we assume that observation of the trajectory
is perfect, and that this trajectory is only “approximately op-
timal”. The definition of “approximately optimal” is provided
later in the paper.

In order for trajectories to be optimal, they have to satisfy
the first-order necessary Karush-Kuhn-Tucker (KKT) condi-
tions of optimality [21]. We assume that we can write the
control input constraints ξ ∈ Ξ using a set of Q inequalities
gq(ξ) ≤ 0 for q = 1, ..., Q and denoted by the function
G = [g1, ..., gQ]T . For the optimization problem (7), the
KKT conditions reduce to the existence of λ ∈ RQ+ that
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satisfy the following conditions

∇ξ
(
αT J̃(x0, τ0, ξ

∗)

)
+

Q∑

q=1

λq∇ξgq(ξ) = 0,

gq(ξ) ≤ 0, q = 1, ..., Q, (8)
λqgq(ξ) = 0, q = 1, ..., Q, (9)

which we can express as residuals

r1 =[α;λ]T [J̃ ;G] = 0, (10)
r2 =(gq(ξ))+, q = 1, ..., Q,

r3 =λqgq(ξ) = 0, l = 1, ..., Q,

where J̃ and G denote the Jacobian matrices of J̃ and G
with respect to the impact controls ξ1, ..., ξN , and 0 denotes
an appropriately-sized vector of all zeros. The notation [ ; ]
refers to vertical concatenation of two matrices.

A trajectory is called “approximately optimal” if the
condition in (10) is satisfied approximately. More precisely,
a trajectory is “approximately optimal” if r2 is close to
zero, and there exists λ ∈ RQ+ such that the norm of
[α;λ]T [J̃ ;G] and r3 is close to zero, for an appropriately
chosen norm [12]. In this paper, we will be using the
euclidean 2-norm, denoted by || · ||2.

Therefore, we pose the IOC problem as the problem of
finding a set of weights α̂ for an observed trajectory, such
that the trajectory is approximately optimal. We write the
IOC problem in the following way

{α̂, λ̂} = arg min
α,λ∈RQ

+

||[α;λ]T [J̃ ;G]||2
2

+ ||r3||
2

2
, (11)

s.t. α ≥ 0, αT 1 = 1, (12)

where 1 denotes an appropriately-sized vector of all ones.
Note that the addition of constraints (12) to the least square
minimization is to avoid getting the trivial solution of α = 0.
The above optimization is convex in the parameters α and λ,
making the proposed IOC algorithm easy to solve. Therefore,
unlike traditional IOC algorithms which often require solving
multiple optimal control problems, the proposed method only
relies on a convex optimization. Also, note that although we
are solving this problem with one observed trajectory, the
problem can be easily extended to finding a cost function
which would explain multiple observed trajectories.

IV. PROPOSED SOLUTION

The formulation we have chosen for the IOC problem
reduces the solution to a simple and computationally efficient
least-squares minimization. The solution to (11) relies on
two components. The first is finding the gradient of the
basis functions with respect to the control inputs. After
the derivatives of the basis functions with respect to the
impact controls are computed, a least-squares minimization
can be solved to recover the estimated weights of each basis
function, thus solving the IOC problem. We will now discuss
how to compute the derivatives of the basis functions, based
on the results in [17].

We first introduce the operator notation Dg(x) ◦ ∂x
to represent derivatives. This notation reads Dg(x) oper-
ates on the perturbation of x, ∂x. Moreover, the notation
Dng(arg1, arg2, . . .) ◦ ∂argn denotes that g(·) is differen-
tiated with respect to the nth argument, and is known as
the slot derivative. For more details on this notation, and the
analysis in this section refer to [17].

The optimization (11) requires computing the Jacobian
matrix J̃ , which in turn relies on computing DξiL̃m(x0, ξ)◦
∂ξi for all i and m. Note that we write L̃m(x0, ξ) since as we
discussed earlier, this basis function can be written explicitly
as a function of x0 and ξ. Therefore, while we also use the
notation L̃m(x+

k , τk) for simplicity in the derivations below,
the basis functions should still be thought of as a function
of the initial states and the impact controls. Therefore, the
derivatives with respect to the impact controls use the chain
rule to take the derivative of the entire expression with
respect to the impact control.

As presented in [17], we can derive an explicit expression
for the derivative of the cost, even when the differential
equations governing the dynamics cannot be integrated ana-
lytically. The derivative of the basis function L̃m(x0, ξ) with
respect to each set of impact controls, ξi, at impact i is given
by chain rule

DξiL̃m(x0, ξ) ◦ ∂ξi =
[
D1L̃m(x+

k , τk) ◦Dξix
+
k ◦ ∂ξi

+ D2L̃m(x+
k , τk) ◦Dξiτk ◦ ∂ξi

]
.

(13)

By investigating the structure of (13), the derivative for
each impact control can be concisely expressed. It be shown
that only a few things need to be computed for each impact
in order to compute all the derivatives.

We need a way to compute these right hand side terms.
To do so, note that these terms involve the derivative of the
impact map and the impact time with respect to the impact
control[

Dξix
+
k ◦ ∂ξi

Dξiτk ◦ ∂ξi

]
=

[
Dξi∆k(x−k , ξk) ◦ ∂ξi
Dξiτk(ξk, x

+
k−1, τk−1) ◦ ∂ξi

]
.

Let
Υi
k = [Dξi∆k(·) ◦ ∂ξi Dξiτk(·) ◦ ∂ξi]T

Cmk =
[
D1L̃m(x+

k , τk) D2L̃m(x+
k , τk)

]
.

The derivative of the impact map and the impact time with
respect to the each impact control is derived in [17]. The
results of the derivation are

Υi
k =





(∏k
j=i+1 Γk−j+i+1

)
Υi
i for k > i

Υi
i for k = i

0 for k < i





where

Γk =

[
D1∆k(·) ◦ αk D1∆k(·) ◦ βk
(D2τk(·))T D3τk(·)

]

αk = Φk−1(τ−k , τ
+
k−1) + fk−1(x−k , τk)(D2τk(·))T
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βk =fk−1(x−k , τk)D3τk(·)
−Φk−1(τ−k , τ

+
k−1)fk−1(x+

k−1, τk−1),

and Φ(t, τ) is the state transition matrix [22] calculated from

d

dt
Φ(t, τ) = A(t) ◦ Φ(t, τ),

with A(t) = D1fk−1(x(t), t) and Φ(τ, τ) = I , where I is
the identity matrix.

The derivative of the m-th basis function is then

DξiL̃m(x0, ξ) ◦ ∂ξi = Cmk Υi
k. (14)

To compute the derivative of the basis functions with
respect to each impact control, we only need to compute
Cmk ,Υ

k
k,Γk ∀ k = 1, . . . , N and ∀ m = 1, ...,M . The

derivatives can now be used in the following least-squares
minimization to solve the IOC problem

{α̂, λ̂} = arg min
α,λ∈RQ

+

||[α;λ]T [J̃ ;G]||2
2

+ ||r3||
2

2
,

s.t. α ≥ 0, αT 1 = 1.

V. EVALUATION

In order to evaluate the performance of the proposed IOC
approach for hybrid systems, we simulate the ParkourBot,
which is a dynamic bipedal climbing robot. We simulate
two different locomotion modes for the ParkourBot, namely
bounce in place and climbing. Subsequently, we test whether
our proposed algorithm could produce cost functions that
are consistent with the locomotion mode, and whether the
recovered trajectory resembles the observed trajectory.

A. The ParkourBot

The ParkourBot is a biped robot, designed at Carnegie
Mellon. The ParkourBot is equipped with two BowLegs
and is similar to the one-legged BowLeg hopper in [23].
During flight, the ParkourBot compresses its spring-like
legs, storing elastic energy. At impact, this stored energy
is then quickly converted to kinetic energy. By controlling
the injected energy and the leg angles, the robot is capable
of climbing up and down as well as bouncing in place. A
cartoon of the robot climbing is seen in Fig 1. (See videos
at http://lims.mech.northwestern.edu/RESEARCH/
current projects/Parkourbot/Parkourbot homepage.html)

A simple model for the ParkourBot assumes a point mass
for the body with two massless legs. The configuration of
the robot is denoted by q(t) = [q1(t), q2(t)]T representing
the horizontal and vertical coordinates respectively. The state
is defined by x(t) = [q(t)T , q̇(t)T ]T . The inertial reference
frame is in the center of the chute, and the walls are a
distance d away from the center. The continuous dynamics
of the robot can be written as follows:

ẋ(t) = f(x(t), t) = [q̇1(t), q̇2(t), 0,−g]T .

In our simulation, both legs have a length l = 0.3, and g = 1.
The impact controls in this simulation are the leg angles,

denoted by ξ = θ. The leg angles are measured positive
clockwise from the positive horizontal axis on the right side,
as shown in Fig. 2.

Optimal Motion Planning for a Class of Hybrid Dynamical Systems
with Impacts

Andrew W. Long, Todd D. Murphey, and Kevin M. Lynch

Abstract— Hybrid dynamical systems with impacts typically
have controls that can influence the time of the impact as well
as the result of the impact. The leg angle of a hopping robot
is an example of an impact control because it can influence
when the impact occurs and the direction of the impulse. This
paper provides a method for computing an explicit expression
for the first derivative of a cost function encoding a desired
trajectory. The first derivative can be used with standard
optimization algorithms to find the optimal impact controls for
motion planning of hybrid dynamical systems with impacts.
The resulting derivation is implemented for a simplified model
of a dynamic climbing robot.

I. INTRODUCTION

Running, hopping and juggling robots are examples of
hybrid dynamical systems with impacts (HDSI). These sys-
tems experience continuous dynamics until they undergo
an impact, resulting in a switch in the dynamics and/or
a discontinuity in the state. Typically these systems have
controls that can influence the time of the impact as well as
the result of the impact. An example impact control could
be the leg angle prior to impact for a hopping robot: the leg
angle determines when the impact occurs and influences the
angle of the impulse due to the impact. This paper addresses
motion planning with impact controls for a particular class
of HDSI.

Consider a hybrid dynamical system with impacts, de-
scribed by the equations:

ẋ = f(x, u, t) when (x, u, ξ) �∈ S (1)
x+ = ∆(x, u, ξ) when (x, u, ξ) ∈ S (2)

where x ∈ X is the state of the system, f represents
the continuous dynamics, S is the impact surface, and ∆
is an impact map that instantaneously maps a pre-impact
condition to a post-impact state x+. The controls consist of
the continuous-time control u ∈ U and the impact control
ξ ∈ Ξ. The impact control ξ may affect both the impact map
∆ (e.g., control impulses applied at the impact time) as well
as the time at which an impact occurs. Impacts occur on the
impact surface S , which may be a function of x, u, and/or
ξ.

An example of an HDSI is a biped robot. The dy-
namics f describe the phases where the robot has zero,
one, or two feet on the ground, and the impact map ∆
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(a) (b)

Fig. 1. (a) Image of ParkourBot. (b) A cartoon of the ParkourBot ascending
a chute

corresponds to events when a foot hits the ground. In
this case, the impact surface S depends only on x, i.e.,
S = S(x). Another example is the Monkeybot, a two-
link planar robot that dynamically locomotes on a vertical
steel wall by using (1) a single motor at the joint between
the two links, and (2) passive pivot joints (“hands”) at
the endpoints of the links that can be electromagnetically
connected to or disconnected from the wall. (See, for ex-
ample, a video of an early prototype of the Monkeybot at
http://www.youtube.com/watch?v=0hfwJEVQyeQ.) The dy-
namics f describe phases when zero, one, or two pivot joints
are attached to the wall; the control u is the torque at the
joint motor; and impacts occur when the electromagnet at a
free-swinging hand is clamped to the wall, creating a pivot
joint. In this case, ξ is the set of impact times. Consequently,
the impact surface S is independent of x and u.

In this paper, our interest is in systems of the form (1)–(2)
where the continuous control is either zero (u = 0) or given
by a specified feedback law (u = u(x)). The impact surface
S may be a function of both x and ξ, i.e.,

Σ :

�
ẋ = f(x, t) when (x, ξ) �∈ S
x+ = ∆(x, ξ) when (x, ξ) ∈ S,

(3)

where f is assumed to be at least once differentiable with
respect to each input. A sequence of impact controls is given
by ξ = [ξ1, . . . , ξN ]T for N impacts with impact times τ =
[τ1, . . . , τN ]T and post-impact states x+ = [x+

1 , . . . , x+
N ]T .

Since the continuous control u(x) has been specified, the
HDSI has been converted to a discrete-time problem.

Examples of such systems include:

• Robot parkour. The ParkourBot (see Fig. 1(a)), devel-
oped at Carnegie Mellon, is a mobile robot with two
springy BowLegs that allow it to dynamically locomote
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Fig. 1. ParkourBot climbing

The results of the derivation are

Υi
k =








k�

j=i+1

Γk−j+i+1


Υi

i k > i (11a)

Υi
i k = i (11b)

0 k < i (11c)
where

Γk =

�
D1∆k(·) ◦ αk D1∆k(·) ◦ βk

(D2τk(·))T D3τk(·)

�

αk = Φk−1(τ
−
k , τ+

k−1) + fk−1(x
−
k , τk)(D2τk(·))T

βk =fk−1(x
−
k , τk)D3τk(·)

−Φk−1(τ
−
k , τ+

k−1)fk−1(x
+
k−1, τk−1),

and Φ(t, τ) is the state transition matrix [13] calculated from

d

dt
Φ(t, τ) = A(t) ◦ Φ(t, τ),

with A(t) = D1fk−1(x(t), t) and Φ(τ, τ) = I , where I is
the identity matrix.

The derivative of the cost simplifies with (11c) to

Dξi
J(xinit, ξ) ◦ ∂ξi =

N�

k=i

CkΥ
i
k. (12)

since the derivative of the cost’s summand is zero for k < i.
To compute the derivative of the cost with respect to each

impact control, we only need to compute Ck,Υk
k,Γk ∀ k =

1, . . . , N . Each derivative is simply a combination (sum and
multiplication) of some or all of these quantities as shown
in (12).

The explicit expression of the derivative in (12) can be
used with stable numerical methods to optimize the impact
control sequence. In addition, the explicit expression for the
derivative provides a numerical test of optimality, which is
useful for terminating the optimization algorithm.

VI. EXAMPLE: PARKOURBOT

The system studied in this example is the two-legged
ParkourBot designed at Carnegie Mellon and depicted in
Fig. 1(a). The ParkourBot is equipped with two BowLegs
and is similar to the one-legged BowLeg hopper in [14].
During flight, the ParkourBot is capable of independently
positioning the leg angles and storing energy by compressing
the spring-like legs. During stance, the stored energy is
converted to kinetic energy. The net amount of energy input
to the system is the difference between the amount of energy
stored and losses due to the impact. By controlling the net
energy input and the leg angles, the robot is capable of
climbing up and down as well as bouncing in place. A
cartoon of the robot climbing is seen in 1(b). (See videos
at http://www.dynaclimb.com/.)

A cartoon of the ParkourBot is shown in Fig. 2. This
example assumes a point mass body, massless legs, hips
located at the point mass and zero stance phase time (instan-
taneous impacts). Impulses act along the leg at impact. It is
assumed that the robot has complete control of the net energy

Fig. 2. Definition of variables for climbing robot example.

input as well as the leg angles. To simplify the example,
the net energy input will be specified. The motion planning
optimization is to determine the locally optimal leg angle
sequence to drive the robot from an initial state to a final
state in a vertical chute.

Three cases are investigated with this example: bouncing
in place with specifying only the final state, bouncing in
place with trajectory tracking and climbing with trajectory
tracking. The purpose of the first two cases is to show the
benefit of the trajectory tracking. The third case illustrates
that the optimization can be used for climbing with constant
non-zero energy input and a constant increase in the vertical
impact location at each impact. Gradient descent with an
Armijo Line search algorithm was used to determine the
locally optimal controls [15].

The ParkourBot’s configuration is the horizontal and ver-
tical coordinates of the point mass denoted as q(t) =
[q1(t), q2(t)]

T ∈ Q. The inertial reference frame is located in
the center of the chute with the vertical walls located a dis-
tance d away. The state is given as x(t) = [q(t)T , q̇(t)T ]T ∈
TQ. The free flight dynamics are governed by:

ẋ(t) = f(x(t), t) = [q̇1(t), q̇2(t), 0,−g/m]
T

,

where m is the mass and g is gravity. For this example,
m = 1 and g = 1. The legs are assumed to be the same
length, l = 0.3. The angles of the legs, θ, are measured
positive clockwise from the horizontal axis positive to the
right as shown in Fig. 2. This convention was used to have
positive leg angles. For this example, the impact controls are
the leg angles (ξ = θ). The distance from the center to either
wall is given as d = 1+l cos(π/4). The initial condition was
selected to be x(τ0) = [−1,−0.5, 1, 1]T , which produces
period-1 bouncing in place motion for optimal angles of π/4
and 3π/4 for the right and left walls, respectively. This initial
condition was chosen to verify the results of the optimization.

The impact time of (8) can be calculated from

τk(θk, x+
k−1, τk−1) =

±d − q1(τk−1) − l cos(θk)

q̇1(τk−1)

where the sign of d depends on which wall is impacted. Since
the legs are identical, no labeling of the length and angle is
required.

With the assumptions above, the impact impulse can
only affect the velocity in the direction along the leg. This
velocity will be referred to as the radial velocity (ṙ(t)). The
normal velocity (ṅ(t)) will be the velocity orthogonal to the

!""#

Fig. 2. Schematic of the ParkourBot

The impact time can be calculated from

τk = hk(θk, x
+
k−1, τk−1) =

±d− q1(τk−1)− lcos(θk)

q̇1(τk−1)
,

where the sign of d depends on the wall that was impacted.
In this setup, the impact impulse only influences the

velocity in the direction along the leg. We denote this radial
velocity by ṙ(t), and we refer to the velocity orthogonal to
the leg as the normal velocity ṅ(t). These velocities can be
calculated using a change of coordinates as follows:

[
ṅ(τ−k )
ṙ(τ−k )

]
=

[
sin(θk) cos(θk)
− cos(θk) sin(θk)

] [
q̇1(τ−k )
q̇2(τ−k )

]

Moreover, we can calculate the post-impact velocities at the
k-th impact using the following equation:

[
ṅ(τ+

k )
ṙ(τ+

k )

]
=

[
ṅ(τ−k )√

ṙ(τ−k )2 + 2Ek

m

]
,

where Ek denotes the net energy input to the system.
Subsequently, the impact map is given by the following
relationship:

∆k(x(τ−k ), θk) =




q1(τ+
k )

q2(τ+
k )

q̇1(τ+
k )

q̇2(τ+
k )


 =

=




1 0 0 0
0 1 0 0
0 0 sin(θk) − cos(θk)
0 0 cos(θk) sin(θk)







q1(τ−k )
q2(τ−k )
ṅ(τ+

k )
ṙ(τ+

k )


 .

We do not enforce any constraints on the control inputs of
the ParkourBot, and thus the IOC equation (11) simplifies.

4965



B. Simulated Basis Functions

In our simulations we choose a set of 11 basis functions.
Two different weightings of these basis functions leads to
two different cost functions, and two different behaviors.
The impact controls of the ParkourBot are optimized for 6
impacts using each cost function. The trajectory obtained
following this optimization is then used with the IOC algo-
rithm discussed in this paper, to produce an estimated cost
function. The estimated cost function is then used to produce
a trajectory, and the resulting trajectory would be compared
with the observed optimal trajectory. The basis functions are

L̃m =
1

2
(x+
m − x+

m,I)
TQm(x+

m − x+
m,I),

for m = 1, ..., 6,

L̃m =
1

2
(x+
m−5 − x+

m−5,C)TQm(x+
m−5 − x+

m−5,C),

for m = 7, ..., 11.

All matrices Qm are chosen as Qm = diag(0, 1, 0, 0) to
only weight the vertical position of the robot. The desired
positions are denoted by x+

k,I = [±1,−0.5,∓1, 1]T , for
k = 1, ..., 6. These basis functions when chosen enforce
the ParkourBot to bounce in place. The desired positions
for m = 7, ..., 11 are denoted by x+

k,C = [±1,−0.5 + (k −
1)h,∓1, 1]T , indicating a desired increase of h in the vertical
position of the robot after every impact, with a value of
h = 0.15 in our simulations. The signs change depending
on the impacted wall. These basis functions when chosen to
enforce the ParkourBot to climb vertically.

C. Bounce In Place Simulation

In this simulation, we obtain an optimal trajectory and con-
trol inputs by solving the optimal control problem with initial
conditions of τ0 = 0 and x(τ0) = [−1,−0.51, 1, 1]T , and
initial controls of ξ0 = {π/5, 4π/5, π/5, 4π/5, π/5, 4π/5},
using the cost function defined by

α∗ = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]T ,

J(x0, τ0, ξ) =

11∑

m=1

αmL̃m.

The resulting trajectory can be seen in Fig. 3, and the
resulting optimal impact controls are

ξ∗ = [0.764, 2.403, 0.734, 2.404, 0.717, 2.540]T .

We apply the proposed IOC algorithm using a Matlab
package for least-squares optimization. Moreover, since the
cost function is invariant to a multiplication by a constant,
we normalize the recovered weights to match the norm of
α∗, resulting in

α̂ =[1.0463, 1.0289, 1.0109, 0.9867, 0.9928, 0.9304,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000]T .

Note that the recovered weights are consistent with the
optimal weights. We solved the optimal control problem with
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q1
�1.0 �0.5 0.5 1.0

�0.5
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Fig. 3. Bounce in place simulation - observed trajectory (top) and recovered
trajectory (bottom), numbered with the impacts

the recovered weights, and achieved a perfect recovery of the
observed trajectory (Fig. 3) and the following controls

ξ̂ = [0.764, 2.403, 0.734, 2.404, 0.714, 2.540]T .

D. Climbing Simulation

In this simulation, we obtain an optimal trajectory and con-
trol inputs by solving the optimal control problem with initial
conditions of τ0 = 0 and x(τ0) = [−1,−0.5, 1, 1]T , and
initial controls of ξ0 = {π/5, 4π/5, π/5, 4π/5, π/5, 4π/5},
using the cost function defined by

α∗ = [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]T ,

J(x0, τ0, ξ) =

11∑

m=1

αmL̃m.

The resulting trajectory can be seen in Fig. 4, and the
resulting optimal impact controls are

ξ∗ = [0.697, 2.572, 0.554, 2.588, 0.556, 2.509]T .

We apply the proposed IOC algorithm using the approach
already discussed, and recover the normalized weights of

α̂ =[0.9944, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.9944, 0.9944, 0.9944, 0.9956, 1.0264]T .

Note that again the recovered weights are consistent with
the optimal weights. We solved the optimal control problem
with the recovered weights, and achieved a perfect recovery
of the observed trajectory (Fig. 4) and the following controls

ξ̂ = [0.697, 2.572, 0.554, 2.588, 0.556, 2.509]T .

E. Discussion

In both of these simulations, the observed trajectory was
perfectly recovered. The recovered weights for the basis
functions are close to the optimal weights, however, the
weights are not perfectly recovered. One reason is that the
least squares minimization is not unique, since the number
of unknowns exceeds the number of equations. This problem
may be solved by using additional trajectories from different
initial conditions, to ensure a unique solution to the opti-
mization. This topic is very relevant to the problem of IOC,
and requires further investigation.
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Fig. 4. Climbing simulation - observed trajectory (top) and recovered
trajectory (bottom), numbered with the impacts

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an IOC algorithm for a
class of hybrid dynamical systems. The method of approach
is computationally efficient, unlike previous approaches to
IOC. We applied our approach to a simulated dynamic
bipedal climbing robot, with different simulated locomotion
modes. Our algorithm was able to successfully estimate
an appropriate cost function based on the mode, and also
reproduce a trajectory close to the observed trajectory.

Future extensions of this approach to more complex hybrid
systems, can prove to be useful in modeling and under-
standing human locomotion. This approach can potentially
help the development of real-time locomotion mode selection
algorithms for prostheses [24]. Moreover, application of this
method to observed human locomotion trajectories can help
shed light on how humans control locomotion.
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